Héctor Carceller, Yaiza Gramuntell, Patrycja Klimczak, Juan Nacher
{"title":"Perineuronal Nets: Subtle Structures with Large Implications.","authors":"Héctor Carceller, Yaiza Gramuntell, Patrycja Klimczak, Juan Nacher","doi":"10.1177/10738584221106346","DOIUrl":null,"url":null,"abstract":"<p><p>Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that surround the soma and proximal dendrites of certain neurons in the central nervous system, particularly parvalbumin-expressing interneurons. Their appearance overlaps the maturation of neuronal circuits and the closure of critical periods in different regions of the brain, setting their connectivity and abruptly reducing their plasticity. As a consequence, the digestion of PNNs, as well as the removal or manipulation of their components, leads to a boost in this plasticity and can play a key role in the functional recovery from different insults and in the etiopathology of certain neurologic and psychiatric disorders. Here we review the structure, composition, and distribution of PNNs and their variation throughout the evolutive scale. We also discuss methodological approaches to study these structures. The function of PNNs during neurodevelopment and adulthood is discussed, as well as the influence of intrinsic and extrinsic factors on these specialized regions of the extracellular matrix. Finally, we review current data on alterations in PNNs described in diseases of the central nervous system (CNS), focusing on psychiatric disorders. Together, all the data available point to the PNNs as a promising target to understand the physiology and pathologic conditions of the CNS.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 5","pages":"569-590"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584221106346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that surround the soma and proximal dendrites of certain neurons in the central nervous system, particularly parvalbumin-expressing interneurons. Their appearance overlaps the maturation of neuronal circuits and the closure of critical periods in different regions of the brain, setting their connectivity and abruptly reducing their plasticity. As a consequence, the digestion of PNNs, as well as the removal or manipulation of their components, leads to a boost in this plasticity and can play a key role in the functional recovery from different insults and in the etiopathology of certain neurologic and psychiatric disorders. Here we review the structure, composition, and distribution of PNNs and their variation throughout the evolutive scale. We also discuss methodological approaches to study these structures. The function of PNNs during neurodevelopment and adulthood is discussed, as well as the influence of intrinsic and extrinsic factors on these specialized regions of the extracellular matrix. Finally, we review current data on alterations in PNNs described in diseases of the central nervous system (CNS), focusing on psychiatric disorders. Together, all the data available point to the PNNs as a promising target to understand the physiology and pathologic conditions of the CNS.
期刊介绍:
Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.