Antifungal chemotherapies and immunotherapies for the future.

IF 1.4 4区 医学 Q4 IMMUNOLOGY Parasite Immunology Pub Date : 2023-02-01 DOI:10.1111/pim.12960
Darius Armstrong-James
{"title":"Antifungal chemotherapies and immunotherapies for the future.","authors":"Darius Armstrong-James","doi":"10.1111/pim.12960","DOIUrl":null,"url":null,"abstract":"<p><p>Human fungal pathogens cause a broad plethora of infections, spanning cutaneous dermatophytoses to invasive infections in immunocompromised hosts. As eukaryotic pathogens are capable of morphotype switching, they present unique challenges both for drug development and the immunological response. Whilst current antifungal therapies are limited to the orally available triazoles, intravenous echonocandins and polyenes, and flucytosine and terbinafine, there has been recent significant progress in the antifungal armamentorium with ibrexafungerp, a novel orally available terpanoid that inhibits 1,3-beta-D-glucan-approved by Food and Drug Administration in 2021, and fosmanogepix, an orally available pro-drug of manogepix, which targets glycosylphosphatidylinositol-anchored protein maturation entering Phase 3 studies for candidaemia. A number of further candidates are in development. There has been significant use of existing immunotherapies such as recombinant interferon-γ and G-CSF for fungal disease in immunocompromised patients, and there are emerging opportunities for monoclonal antibodies targeting TH2 inflammation. Omalizumab, an anti-IgE monoclonal antibody in asthma, is now used routinely for the treatment of allergic bronchopulmonary aspergillosis, and further agents targeting IL-4 and IL-5 are being evaluated. In addition, T-cell CAR therapy is showing early promise for fungal disease. Thus, we are likely to see rapid advances to our approach to the management of fungal disease in the near future.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078527/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pim.12960","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Human fungal pathogens cause a broad plethora of infections, spanning cutaneous dermatophytoses to invasive infections in immunocompromised hosts. As eukaryotic pathogens are capable of morphotype switching, they present unique challenges both for drug development and the immunological response. Whilst current antifungal therapies are limited to the orally available triazoles, intravenous echonocandins and polyenes, and flucytosine and terbinafine, there has been recent significant progress in the antifungal armamentorium with ibrexafungerp, a novel orally available terpanoid that inhibits 1,3-beta-D-glucan-approved by Food and Drug Administration in 2021, and fosmanogepix, an orally available pro-drug of manogepix, which targets glycosylphosphatidylinositol-anchored protein maturation entering Phase 3 studies for candidaemia. A number of further candidates are in development. There has been significant use of existing immunotherapies such as recombinant interferon-γ and G-CSF for fungal disease in immunocompromised patients, and there are emerging opportunities for monoclonal antibodies targeting TH2 inflammation. Omalizumab, an anti-IgE monoclonal antibody in asthma, is now used routinely for the treatment of allergic bronchopulmonary aspergillosis, and further agents targeting IL-4 and IL-5 are being evaluated. In addition, T-cell CAR therapy is showing early promise for fungal disease. Thus, we are likely to see rapid advances to our approach to the management of fungal disease in the near future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来的抗真菌化疗和免疫疗法。
人类真菌病原体引起广泛的过度感染,从皮肤皮肤真菌病到免疫功能低下宿主的侵袭性感染。由于真核病原体具有形态转换的能力,它们对药物开发和免疫反应都提出了独特的挑战。虽然目前的抗真菌治疗仅限于口服三唑、静脉注射echonocandins和多烯、氟胞嘧啶和特比萘芬,但最近在抗真菌方面取得了重大进展,包括ibrexafungerp(一种新型口服萜类药物,可抑制1,3- β -d -葡聚糖)和fosmangepix(一种口服的manogepix前药)。靶向糖基磷脂酰肌醇锚定蛋白成熟,进入念珠菌血症的3期研究。更多的候选药物正在开发中。现有的免疫疗法如重组干扰素-γ和G-CSF用于治疗免疫功能低下患者的真菌疾病,并且针对TH2炎症的单克隆抗体也出现了机会。Omalizumab是一种用于哮喘的抗ige单克隆抗体,目前常规用于治疗过敏性支气管肺曲霉病,并且正在评估进一步靶向IL-4和IL-5的药物。此外,t细胞CAR疗法在真菌疾病方面显示出早期的希望。因此,在不久的将来,我们很可能会看到真菌疾病管理方法的快速发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Parasite Immunology
Parasite Immunology 医学-寄生虫学
CiteScore
4.70
自引率
4.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Parasite Immunology is an international journal devoted to research on all aspects of parasite immunology in human and animal hosts. Emphasis has been placed on how hosts control parasites, and the immunopathological reactions which take place in the course of parasitic infections. The Journal welcomes original work on all parasites, particularly human parasitology, helminths, protozoa and ectoparasites.
期刊最新文献
Murine immune responses to Schistosoma haematobium and the vaccine candidate rSh28GST Leishmania donovani Modulates Macrophage Lipidome During Infection. Generation of Devil Facial Tumour Cells Co-Expressing MHC With CD80, CD86 or 41BBL to Enhance Tumour Immunogenicity. SEA Alleviates Hepatic Ischaemia-Reperfusion Injury by Promoting M2 Macrophage Polarisation. Evaluation of Somatic Antigens of Adult Toxocara helminthes for Detection of Human Toxocariasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1