Xin Huang, Jianming Wei, Dan Wu, Na Mi, Sili Fang, Yao Xiao, Yunzhou Li
{"title":"Silencing of <i>SlDRB1</i> gene reduces resistance to tomato yellow leaf curl virus (TYLCV) in tomato (<i>Solanum lycopersicum</i>).","authors":"Xin Huang, Jianming Wei, Dan Wu, Na Mi, Sili Fang, Yao Xiao, Yunzhou Li","doi":"10.1080/15592324.2022.2149942","DOIUrl":null,"url":null,"abstract":"<p><p>Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of <i>DRB</i> in tomato resistant to TYLCV. In this experiment, the expression of the <i>SlDRB1</i> and <i>SlDRB4</i> genes was analyzed in tomato leaves by qPCR, and the function of <i>SlDRB1</i> and <i>SlDRB4</i> in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of <i>SlDRB1</i> gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the <i>SlDRB1</i> gene. However, there were no significant expression differences in <i>SlDRB4</i> after TYLCV inoculation. Our study showed that silencing <i>SlDRB1</i> attenuated the ability of tomato plants to resist virus infection; therefore, <i>SlDRB1</i> may play a key role in the defense against TYLCV in tomato plants, whereas <i>SlDRB4</i> is likely not involved in this defense response. Taken together, These results suggest that the <i>DRB</i> gene is involved in the mechanism of antiviral activity.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2149942","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of DRB in tomato resistant to TYLCV. In this experiment, the expression of the SlDRB1 and SlDRB4 genes was analyzed in tomato leaves by qPCR, and the function of SlDRB1 and SlDRB4 in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of SlDRB1 gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the SlDRB1 gene. However, there were no significant expression differences in SlDRB4 after TYLCV inoculation. Our study showed that silencing SlDRB1 attenuated the ability of tomato plants to resist virus infection; therefore, SlDRB1 may play a key role in the defense against TYLCV in tomato plants, whereas SlDRB4 is likely not involved in this defense response. Taken together, These results suggest that the DRB gene is involved in the mechanism of antiviral activity.
期刊介绍:
Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.