{"title":"Enalapril increases the urinary excretion of metformin in rats by inducing multidrug and toxin excretion protein 1 in the kidney","authors":"Xue-yan Gou, Yan-fang Wu, Feng-lin Ran, Yan-rong Ma, Xin-an Wu","doi":"10.1002/bdd.2341","DOIUrl":null,"url":null,"abstract":"<p>Two-thirds of patients with type 2 diabetes mellitus have hypertension, and thus the combination of two or more drugs to treat these diseases is common. It has been shown that the combination of metformin and enalapril has beneficial effects, but few studies have evaluated the interactions between these two drugs. This study investigated the effects of enalapril on the pharmacokinetics and urinary excretion of metformin in rats, with a focus on transporter-mediated drug interactions. Rats were dosed orally with metformin alone (100 mg/kg) or in combination with enalapril (4 mg/kg). The concentration of metformin was measured by high performance liquid chromatography and the level of organic cation transporters (rOCTs) and multidrug and toxin excretion protein 1 (rMATE1), which mediate the uptake and efflux of metformin, respectively, were evaluated by immunoblotting. After single and 7-day dosing, the plasma concentration of metformin in the co-administration group was significantly lower than that in the metformin-only group, and the CL/F and urinary excretion were increased in the co-administration group. Enalapril did not affect the K<sub>p</sub> of metformin but reduced renal slice-uptake of metformin. The expression of rMATE1 was increased, whereas rOCT2 expression was decreased in rat kidney. Importantly, long-term co-administration of metformin and enalapril markedly decreased the level of lactic acid and uric acid in the blood. Enalapril increases the urinary excretion of metformin through the up-regulation of rMATE1. This reveals a new mechanism of drug interactions and provides a basis for drug dosage adjustment when these drugs are co-administered.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"43 6","pages":"255-264"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2341","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-thirds of patients with type 2 diabetes mellitus have hypertension, and thus the combination of two or more drugs to treat these diseases is common. It has been shown that the combination of metformin and enalapril has beneficial effects, but few studies have evaluated the interactions between these two drugs. This study investigated the effects of enalapril on the pharmacokinetics and urinary excretion of metformin in rats, with a focus on transporter-mediated drug interactions. Rats were dosed orally with metformin alone (100 mg/kg) or in combination with enalapril (4 mg/kg). The concentration of metformin was measured by high performance liquid chromatography and the level of organic cation transporters (rOCTs) and multidrug and toxin excretion protein 1 (rMATE1), which mediate the uptake and efflux of metformin, respectively, were evaluated by immunoblotting. After single and 7-day dosing, the plasma concentration of metformin in the co-administration group was significantly lower than that in the metformin-only group, and the CL/F and urinary excretion were increased in the co-administration group. Enalapril did not affect the Kp of metformin but reduced renal slice-uptake of metformin. The expression of rMATE1 was increased, whereas rOCT2 expression was decreased in rat kidney. Importantly, long-term co-administration of metformin and enalapril markedly decreased the level of lactic acid and uric acid in the blood. Enalapril increases the urinary excretion of metformin through the up-regulation of rMATE1. This reveals a new mechanism of drug interactions and provides a basis for drug dosage adjustment when these drugs are co-administered.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods