Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation.

IF 2.1 4区 生物学 Q2 BIOLOGY Biological Bulletin Pub Date : 2022-10-01 DOI:10.1086/722472
Christopher J Coates, Flávia A Belato, Kenneth M Halanych, Elisa M Costa-Paiva
{"title":"Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation.","authors":"Christopher J Coates,&nbsp;Flávia A Belato,&nbsp;Kenneth M Halanych,&nbsp;Elisa M Costa-Paiva","doi":"10.1086/722472","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/722472","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋无脊椎动物耐高温脱氧氧转运蛋白的结构-功能关系。
对气候变化的预测——或多或少——揭示了一种常见的情景,即海水以致命的三种压力因素为特征:更高的温度、更低的含氧量和酸化。栖息在沿海水域的变温分类群,如贝类,容易受到快速和长期的环境干扰,如热浪、污染引起的富营养化和缺氧。在许多无脊椎动物中,血淋巴的氧运输能力(血当量)被认为是耐热性和呼吸的近端驱动因素。此外,在环境胁迫下维持体内平衡与基于血淋巴的氧运输或结合蛋白的活动密不可分。在海洋无脊椎动物中,有几个蛋白质群完成了这一角色:铜基细胞外血红蛋白,铁基细胞内血红蛋白和血红蛋白,以及巨细胞外血红蛋白。在这篇简短的文章中,我们回顾了在气候变化的背景下,氧转运蛋白,特别是血青素的分布和多功能特性,以及随之而来的海洋无脊椎动物的生理重编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
期刊最新文献
Scott Ross Santos (1972-2024): A Force of Good in the Exploration of Ecology and Evolution. Differences of Sucker Formation Processes Depending on Benthic or Pelagic Posthatching Lifestyles in Two Octopus Species. Predators Induce Phenotypic Plasticity in Echinoderms across Life History Stages. A Novel Behavioral Display in Lymnaea Induced by Quercetin and Hypoxia. Cephalochordate Hemocytes: First Demonstration for Asymmetron lucayanum (Bahamas Lancelet) Plus Augmented Description for Branchiostoma floridae (Florida Amphioxus).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1