Machine learning in lung transplantation: Where are we?

IF 3.2 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL Presse Medicale Pub Date : 2022-12-01 DOI:10.1016/j.lpm.2022.104140
Evgeni Mekov , Viktoria Ilieva
{"title":"Machine learning in lung transplantation: Where are we?","authors":"Evgeni Mekov ,&nbsp;Viktoria Ilieva","doi":"10.1016/j.lpm.2022.104140","DOIUrl":null,"url":null,"abstract":"<div><p>Lung transplantation<span><span> has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, </span>immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.</span></p></div>","PeriodicalId":20530,"journal":{"name":"Presse Medicale","volume":"51 4","pages":"Article 104140"},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presse Medicale","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0755498222000331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 3

Abstract

Lung transplantation has been accepted as a viable treatment for end-stage respiratory failure. While regression models continue to be a standard approach for attempting to predict patients’ outcomes after lung transplantation, more sophisticated supervised machine learning (ML) techniques are being developed and show encouraging results. Transplant clinicians could utilize ML as a decision-support tool in a variety of situations (e.g. waiting list mortality, donor selection, immunosuppression, rejection prediction). Although for some topics ML is at an advanced stage of research (i.e. imaging and pathology) there are certain topics in lung transplantation that needs to be aware of the benefits it could provide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在肺移植中的应用:进展如何?
肺移植已被认为是治疗终末期呼吸衰竭的可行方法。虽然回归模型仍然是预测肺移植后患者预后的标准方法,但更复杂的监督机器学习(ML)技术正在开发中,并显示出令人鼓舞的结果。移植临床医生可以在各种情况下(如等待名单死亡率、供体选择、免疫抑制、排斥预测)利用ML作为决策支持工具。尽管对于某些主题,ML处于研究的高级阶段(即影像学和病理学),但在肺移植的某些主题中,需要意识到它可以提供的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Presse Medicale
Presse Medicale 医学-医学:内科
自引率
3.70%
发文量
40
审稿时长
43 days
期刊介绍: Seule revue médicale "généraliste" de haut niveau, La Presse Médicale est l''équivalent francophone des grandes revues anglosaxonnes de publication et de formation continue. A raison d''un numéro par mois, La Presse Médicale vous offre une double approche éditoriale : - des publications originales (articles originaux, revues systématiques, cas cliniques) soumises à double expertise, portant sur les avancées médicales les plus récentes ; - une partie orientée vers la FMC, vous propose une mise à jour permanente et de haut niveau de vos connaissances, sous forme de dossiers thématiques et de mises au point dans les principales spécialités médicales, pour vous aider à optimiser votre formation.
期刊最新文献
Editorial board Contents Preventative and curative treatment of venous thromboembolic disease in cancer patients Elderly patients with venous thromboembolism: Insights from the RIETE registry Impact of thrombophilia on venous thromboembolism management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1