{"title":"Nanocages and cell-membrane display technology as smart biomaterials.","authors":"Yulan Wang, Richard J Miron, Xiaoxin Zhang, Hao Zeng, Yufeng Zhang","doi":"10.1111/prd.12514","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanocages (AuNCs) have been invented and developed over two decades as biomaterial in clinical medicine with great application potential. AuNCs have a characteristic structure of porous walls with hollow interior and a compact size. This makes it possible for them to transport biomolecules or drugs with the advantages of their photothermal effects that could help further destroy germs or tumors while also regulating the release of drugs inside. Furthermore, their bioactivity and application can be broadened by using cell-membrane display technology. AuNCs have shown tremendous potential in antibacterial activity, inflammation modulation, and tissue regeneration, which is required in periodontitis and peri-implantitis treatment. Thus, this article provides an overview of AuNCs synthesis, characteristics, surface modifications, and clinical applications, aiming to serve as a reference for the design and fabrication of AuNCs-based smart materials for periodontal or peri-implant application.</p>","PeriodicalId":19736,"journal":{"name":"Periodontology 2000","volume":" ","pages":"180-191"},"PeriodicalIF":17.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodontology 2000","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/prd.12514","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Gold nanocages (AuNCs) have been invented and developed over two decades as biomaterial in clinical medicine with great application potential. AuNCs have a characteristic structure of porous walls with hollow interior and a compact size. This makes it possible for them to transport biomolecules or drugs with the advantages of their photothermal effects that could help further destroy germs or tumors while also regulating the release of drugs inside. Furthermore, their bioactivity and application can be broadened by using cell-membrane display technology. AuNCs have shown tremendous potential in antibacterial activity, inflammation modulation, and tissue regeneration, which is required in periodontitis and peri-implantitis treatment. Thus, this article provides an overview of AuNCs synthesis, characteristics, surface modifications, and clinical applications, aiming to serve as a reference for the design and fabrication of AuNCs-based smart materials for periodontal or peri-implant application.
期刊介绍:
Periodontology 2000 is a series of monographs designed for periodontists and general practitioners interested in periodontics. The editorial board selects significant topics and distinguished scientists and clinicians for each monograph. Serving as a valuable supplement to existing periodontal journals, three monographs are published annually, contributing specialized insights to the field.