Preparation of pyrite concentrate powder from the Thackaringa mine for quantitative phase analysis using X-ray diffraction.

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2022-11-29 eCollection Date: 2022-12-01 DOI:10.1107/S1600576722009888
Hamish McDougall, Monica Hibberd, Andrew Tong, Suzanne Neville, Vanessa Peterson, Christophe Didier
{"title":"Preparation of pyrite concentrate powder from the Thackaringa mine for quantitative phase analysis using X-ray diffraction.","authors":"Hamish McDougall, Monica Hibberd, Andrew Tong, Suzanne Neville, Vanessa Peterson, Christophe Didier","doi":"10.1107/S1600576722009888","DOIUrl":null,"url":null,"abstract":"<p><p>The quantitative phase analysis using X-ray diffraction of pyrite ore concentrate samples extracted from the Thackaringa mine is problematic due to poor particle statistics, microabsorption and preferred orientation. The influence of sample preparation on these issues has been evaluated, with ball milling of the powder found most suitable for accurate and precise quantitative phase analysis. The milling duration and other aspects of sample preparation have been explored, resulting in accurate phase reflection intensities when particle sizes are below 5 µm. Quantitative phase analysis on those samples yielded precise phase fractions with standard deviations below 0.3 wt%. Some discrepancy between the elemental composition obtained using X-ray powder diffraction data and that determined using wavelength-dispersive X-ray fluorescence was found, and is thought to arise from unaccounted for crystalline phase substitution and the possible presence of an amorphous phase. This study provides a methodology for the precise and accurate quantitative phase analysis of X-ray powder diffraction data of pyrite ore concentrate from the Thackaringa mine and a discussion of the limitations of the method. The optimization process reveals the importance of confirming reproducibility on new samples, with as much prior knowledge as possible.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576722009888","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The quantitative phase analysis using X-ray diffraction of pyrite ore concentrate samples extracted from the Thackaringa mine is problematic due to poor particle statistics, microabsorption and preferred orientation. The influence of sample preparation on these issues has been evaluated, with ball milling of the powder found most suitable for accurate and precise quantitative phase analysis. The milling duration and other aspects of sample preparation have been explored, resulting in accurate phase reflection intensities when particle sizes are below 5 µm. Quantitative phase analysis on those samples yielded precise phase fractions with standard deviations below 0.3 wt%. Some discrepancy between the elemental composition obtained using X-ray powder diffraction data and that determined using wavelength-dispersive X-ray fluorescence was found, and is thought to arise from unaccounted for crystalline phase substitution and the possible presence of an amorphous phase. This study provides a methodology for the precise and accurate quantitative phase analysis of X-ray powder diffraction data of pyrite ore concentrate from the Thackaringa mine and a discussion of the limitations of the method. The optimization process reveals the importance of confirming reproducibility on new samples, with as much prior knowledge as possible.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 X 射线衍射法制备塔卡林加矿的黄铁矿精矿粉,以进行定量相分析。
使用 X 射线衍射法对塔卡林加矿提取的黄铁矿精矿样品进行定量相分析存在问题,原因是颗粒统计、微吸收和优先取向较差。对样品制备对这些问题的影响进行了评估,发现球磨粉末最适合进行准确和精确的定量相分析。对研磨持续时间和样品制备的其他方面进行了探讨,结果表明,当颗粒尺寸小于 5 微米时,相反射强度非常准确。对这些样品进行的定量相分析得出了精确的相分数,标准偏差低于 0.3 wt%。利用 X 射线粉末衍射数据获得的元素组成与利用波长色散 X 射线荧光测定的元素组成之间存在一些差异,这可能是由于未考虑晶相置换以及可能存在无定形相造成的。本研究提供了对塔克林加矿黄铁矿精矿的 X 射线粉末衍射数据进行精确定量相分析的方法,并讨论了该方法的局限性。优化过程揭示了在确认新样品的可重复性时尽可能事先了解情况的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
RMCProfile7: reverse Monte Carlo for multiphase systems. On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources. Operando pair distribution function analysis of nanocrystalline functional materials: the case of TiO2-bronze nanocrystals in Li-ion battery electrodes. Rapid detection of rare events from in situX-ray diffraction data using machine learning. Evolution of elliptical SAXS patterns in aligned systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1