Exosomes from bone mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury by inhibiting TLR3 via delivering miR-941.
{"title":"Exosomes from bone mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury by inhibiting TLR3 via delivering miR-941.","authors":"Yu Wang, Xiaofei Sun, Qing Yang, Lili Yin","doi":"10.1556/2060.2022.00108","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aim to investigate the protective effect and underlying mechanisms of BMSCs-exo on human endometrial stromal cells (HESCs) induced by mifepristone in this study.</p><p><strong>Methods: </strong>BMSCs-exo were extracted and then identified by transmission electron microscopy and western-blot assay. RT-PCR assay was used to determine the level of miR-941. MiR-941 mimics or inhibitor were transfected into BMSCs and the exosomes were extracted. Then, Cell activity, apoptosis rate, cell migration and invasion, as well as the expression of angiogenic proteins were determined in HESCs stimulated by mifepristone and BMSCs-exo. Next, Dual-luciferase reporting assay was used to verify the targeted binding of miR-941 to TLR3, and the TLR3 expression in HESCs was detected by RT-PCR and western-blot. Finally, TLR3 was overexpressed to evaluate the effects of miR-941 from BMSCs-exo on cell apoptosis, cell invasion and angiogenesis in HESCs induced by mifepristone.</p><p><strong>Results: </strong>miR-941 was highly expressed in BMSCs-exo. Exosome miR-941 in BMSCs-exo inhibited the cell apoptosis, and promoted cell activity, cell migration, invasion as well as angiogenesis were also improved in HESCs induced by mifepristone. TLR3 was a target of miR-941, which was up-regulated in mifepristonetreated HESCs. We further found that miR-941 derived from BMSCs-exo down-regulated the expression of TLR3 in HESCs treated by mifepristone. In addition, TLR3 overexpression blocked the inhibition of miR-941 on mifepristone-induced cell apoptosis, as well as cell migration and angiogenesis in HESCs.</p><p><strong>Conclusions: </strong>Thus, we concluded that BMSCs-exo has protective effect on mifepristone-induced cell damage by delivering miR-941 which targeted TLR3 and regulated cell activity, migration, and angiogenesis in HESCs.</p>","PeriodicalId":20058,"journal":{"name":"Physiology international","volume":"109 4","pages":"443-456"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2060.2022.00108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Objective: We aim to investigate the protective effect and underlying mechanisms of BMSCs-exo on human endometrial stromal cells (HESCs) induced by mifepristone in this study.
Methods: BMSCs-exo were extracted and then identified by transmission electron microscopy and western-blot assay. RT-PCR assay was used to determine the level of miR-941. MiR-941 mimics or inhibitor were transfected into BMSCs and the exosomes were extracted. Then, Cell activity, apoptosis rate, cell migration and invasion, as well as the expression of angiogenic proteins were determined in HESCs stimulated by mifepristone and BMSCs-exo. Next, Dual-luciferase reporting assay was used to verify the targeted binding of miR-941 to TLR3, and the TLR3 expression in HESCs was detected by RT-PCR and western-blot. Finally, TLR3 was overexpressed to evaluate the effects of miR-941 from BMSCs-exo on cell apoptosis, cell invasion and angiogenesis in HESCs induced by mifepristone.
Results: miR-941 was highly expressed in BMSCs-exo. Exosome miR-941 in BMSCs-exo inhibited the cell apoptosis, and promoted cell activity, cell migration, invasion as well as angiogenesis were also improved in HESCs induced by mifepristone. TLR3 was a target of miR-941, which was up-regulated in mifepristonetreated HESCs. We further found that miR-941 derived from BMSCs-exo down-regulated the expression of TLR3 in HESCs treated by mifepristone. In addition, TLR3 overexpression blocked the inhibition of miR-941 on mifepristone-induced cell apoptosis, as well as cell migration and angiogenesis in HESCs.
Conclusions: Thus, we concluded that BMSCs-exo has protective effect on mifepristone-induced cell damage by delivering miR-941 which targeted TLR3 and regulated cell activity, migration, and angiogenesis in HESCs.
期刊介绍:
The journal provides a forum for important new research papers written by eminent scientists on experimental medical sciences. Papers reporting on both original work and review articles in the fields of basic and clinical physiology, pathophysiology (from the subcellular organization level up to the oranizmic one), as well as related disciplines, including history of physiological sciences, are accepted.