[Study of the efficiency of cellular accumulation of doxorubicin supplied with a targeted delivery system based on phospholipid nanoparticles with integrin-directed peptide].
L V Kostryukova, Yu A Tereshkina, E G Tikhonova, M A Sanzhakov, D V Bobrova, Yu Yu Khudoklinova
{"title":"[Study of the efficiency of cellular accumulation of doxorubicin supplied with a targeted delivery system based on phospholipid nanoparticles with integrin-directed peptide].","authors":"L V Kostryukova, Yu A Tereshkina, E G Tikhonova, M A Sanzhakov, D V Bobrova, Yu Yu Khudoklinova","doi":"10.18097/PBMC20226806437","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapeutic agents containing targeted systems are a promising pathway to increase the effectiveness of glioblastoma treatment. Specific proteins characterized by increased expression on the surface of tumor cells are considered as possible targets. Integrin αvβ3 is one of such proteins on the cell surface. It effectively binds the cyclic Arg-Gly-Asp (cRGD) peptide. In this study, the cRGD peptide-modified doxorubicin (Dox) phospholipid composition was investigated. The particle size of this composition was 43.76±2.09 nm, the ζ-potential was 4.33±0.54 mV. Dox was almost completely incorporated into the nanoparticles (99.7±0.58%). The drug release increased in an acidic medium (at pH 5.0 of about 35±3.2%). The total accumulation and internalization of Dox used the composition of phospholipid nanoparticles with the targeted vector was 1.4-fold higher as compared to the free form. In the HeLa cell line (not expressing αvβ3 integrin) this effect was not observed. These results suggest the prospects of using the cyclic RGD peptide in the delivery of Dox to glioblastoma cells and the feasibility of further investigation of the mechanism of action of the entire composition as a whole.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"68 6","pages":"437-443"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20226806437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapeutic agents containing targeted systems are a promising pathway to increase the effectiveness of glioblastoma treatment. Specific proteins characterized by increased expression on the surface of tumor cells are considered as possible targets. Integrin αvβ3 is one of such proteins on the cell surface. It effectively binds the cyclic Arg-Gly-Asp (cRGD) peptide. In this study, the cRGD peptide-modified doxorubicin (Dox) phospholipid composition was investigated. The particle size of this composition was 43.76±2.09 nm, the ζ-potential was 4.33±0.54 mV. Dox was almost completely incorporated into the nanoparticles (99.7±0.58%). The drug release increased in an acidic medium (at pH 5.0 of about 35±3.2%). The total accumulation and internalization of Dox used the composition of phospholipid nanoparticles with the targeted vector was 1.4-fold higher as compared to the free form. In the HeLa cell line (not expressing αvβ3 integrin) this effect was not observed. These results suggest the prospects of using the cyclic RGD peptide in the delivery of Dox to glioblastoma cells and the feasibility of further investigation of the mechanism of action of the entire composition as a whole.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).