Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam.

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL WIREs Mechanisms of Disease Pub Date : 2022-11-01 DOI:10.1002/wsbm.1571
Luying Xiong, Xueting Wang, Yuan Wang, Wei Yu, Yanzi Zhou, Xiaohui Chi, Tingting Xiao, Yonghong Xiao
{"title":"Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam.","authors":"Luying Xiong,&nbsp;Xueting Wang,&nbsp;Yuan Wang,&nbsp;Wei Yu,&nbsp;Yanzi Zhou,&nbsp;Xiaohui Chi,&nbsp;Tingting Xiao,&nbsp;Yonghong Xiao","doi":"10.1002/wsbm.1571","DOIUrl":null,"url":null,"abstract":"<p><p>Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to bla<sub>KPC</sub> mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"14 6","pages":"e1571"},"PeriodicalIF":4.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788277/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1571","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 5

Abstract

Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌对头孢他啶/阿维巴坦耐药的分子机制
Ceftazidime/avibactam (CAZ/AVI)是头孢他啶与新型β-内酰胺酶抑制剂(avibactam)的联合产品,已获得美国食品药品监督管理局、欧盟和中国国家药品监督管理局的批准。CAZ/AVI主要用于治疗成人并发尿路感染和并发腹腔内感染,以及对CAZ/AVI敏感的碳青霉烯耐药肠杆菌科(CRE)感染患者。然而,CAZ/AVI临床应用的增加导致耐药菌株的发展。大多数菌株的耐药机制归因于blaKPC突变,该突变导致β-内酰胺酶的氨基酸取代和基因表达的改变。对CAZ/AVI的抗性也与外膜蛋白的表达减少和丢失或外排泵的过度表达有关。本文综述了CAZ/AVI耐药菌的流行情况、耐药机制以及CAZ/AVI检测方法的选择,旨在为临床预防和治疗CAZ/AVI耐药菌株提供科学依据,并为新药开发提供指导。本文分类为:感染性疾病>分子与细胞生理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
期刊最新文献
Host-Pathogen Interaction Databases: Tools for Rapid Understanding of Microbial Pathogenesis. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. Advances in understanding immune homeostasis in latent tuberculosis infection. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1