[Molecular basis of biological activity of polysaccharides in COVID-19 associated conditions].

Q3 Biochemistry, Genetics and Molecular Biology Biomeditsinskaya khimiya Pub Date : 2022-12-01 DOI:10.18097/PBMC20226806403
E A Generalov, E Yu Simonenko, N G Kulchenko, L V Yakovenko
{"title":"[Molecular basis of biological activity of polysaccharides in COVID-19 associated conditions].","authors":"E A Generalov,&nbsp;E Yu Simonenko,&nbsp;N G Kulchenko,&nbsp;L V Yakovenko","doi":"10.18097/PBMC20226806403","DOIUrl":null,"url":null,"abstract":"<p><p>The review considers the main molecular biological features of the COVID-19 causative agent, the SARS-CoV-2 virus: life cycle, viral cell penetration strategies, interactions of viral proteins with human proteins, cytopathic effects. We also analyze pathological conditions that occur both during the course of the COVID-19 disease and after virus elimination. A brief review of the biological activities of polysaccharides isolated from various sources is given, and possible molecular biological mechanisms of these activities are considered. Data analysis shows that polysaccharides are a class of biological molecules with wide potential for use in the treatment of both acute conditions in COVID-19 and post-COVID syndrome.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"68 6","pages":"403-418"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20226806403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

The review considers the main molecular biological features of the COVID-19 causative agent, the SARS-CoV-2 virus: life cycle, viral cell penetration strategies, interactions of viral proteins with human proteins, cytopathic effects. We also analyze pathological conditions that occur both during the course of the COVID-19 disease and after virus elimination. A brief review of the biological activities of polysaccharides isolated from various sources is given, and possible molecular biological mechanisms of these activities are considered. Data analysis shows that polysaccharides are a class of biological molecules with wide potential for use in the treatment of both acute conditions in COVID-19 and post-COVID syndrome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[多糖在COVID-19相关条件下生物活性的分子基础]。
本文综述了COVID-19病原体SARS-CoV-2病毒的主要分子生物学特征:生命周期、病毒细胞渗透策略、病毒蛋白与人蛋白的相互作用、细胞病变效应。我们还分析了在COVID-19疾病过程中和病毒消除后发生的病理情况。本文综述了从不同来源分离的多糖的生物活性,并对其可能的分子生物学机制进行了探讨。数据分析表明,多糖是一类具有广泛潜力的生物分子,可用于治疗COVID-19急性病症和COVID-19后综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
期刊最新文献
Fundamentals of protein chemistry at the Institute of Biomedical Chemistry. In silico and in cellulo approaches for functional annotation of human protein splice variants. Nanowire-based biosensors for solving biomedical problems. Proteome of plasma extracellular vesicles as a source of colorectal cancer biomarkers. Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1