Zhihan Hu, Yi Liu, Zongjiang Yao, Liming Chen, Gang Wang, Xiaohui Liu, Yafei Tian, Guangtong Cao
{"title":"Stages of preadipocyte differentiation: biomarkers and pathways for extracellular structural remodeling.","authors":"Zhihan Hu, Yi Liu, Zongjiang Yao, Liming Chen, Gang Wang, Xiaohui Liu, Yafei Tian, Guangtong Cao","doi":"10.1186/s41065-022-00261-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study utilized bioinformatics to analyze the underlying biological mechanisms involved in adipogenic differentiation, synthesis of the extracellular matrix (ECM), and angiogenesis during preadipocyte differentiation in human Simpson-Golabi-Behmel syndrome at different time points and identify targets that can potentially improve fat graft survival.</p><p><strong>Results: </strong>We analyzed two expression profiles from the Gene Expression Omnibus and identified differentially expressed genes (DEGs) at six different time points after the initiation of preadipocyte differentiation. Related pathways were identified using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis (GSEA). We further constructed a protein-protein interaction (PPI) network and its central genes. The results showed that upregulated DEGs were involved in cell differentiation, lipid metabolism, and other cellular activities, while downregulated DEGs were associated with angiogenesis and development, ECM tissue synthesis, and intercellular and intertissue adhesion. GSEA provided a more comprehensive basis, including participation in and positive regulation of key pathways of cell metabolic differentiation, such as the \"peroxisome proliferator-activated receptor signaling pathway\" and the \"adenylate-activated protein kinase signaling pathway,\" a key pathway that negatively regulates pro-angiogenic development, ECM synthesis, and adhesion.</p><p><strong>Conclusions: </strong>We identified the top 20 hub genes in the PPI network, including genes involved in cell differentiation, ECM synthesis, and angiogenesis development, providing potential targets to improve the long-term survival rate of fat grafts. Additionally, we identified drugs that may interact with these targets to potentially improve fat graft survival.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"159 1","pages":"47"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-022-00261-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study utilized bioinformatics to analyze the underlying biological mechanisms involved in adipogenic differentiation, synthesis of the extracellular matrix (ECM), and angiogenesis during preadipocyte differentiation in human Simpson-Golabi-Behmel syndrome at different time points and identify targets that can potentially improve fat graft survival.
Results: We analyzed two expression profiles from the Gene Expression Omnibus and identified differentially expressed genes (DEGs) at six different time points after the initiation of preadipocyte differentiation. Related pathways were identified using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis (GSEA). We further constructed a protein-protein interaction (PPI) network and its central genes. The results showed that upregulated DEGs were involved in cell differentiation, lipid metabolism, and other cellular activities, while downregulated DEGs were associated with angiogenesis and development, ECM tissue synthesis, and intercellular and intertissue adhesion. GSEA provided a more comprehensive basis, including participation in and positive regulation of key pathways of cell metabolic differentiation, such as the "peroxisome proliferator-activated receptor signaling pathway" and the "adenylate-activated protein kinase signaling pathway," a key pathway that negatively regulates pro-angiogenic development, ECM synthesis, and adhesion.
Conclusions: We identified the top 20 hub genes in the PPI network, including genes involved in cell differentiation, ECM synthesis, and angiogenesis development, providing potential targets to improve the long-term survival rate of fat grafts. Additionally, we identified drugs that may interact with these targets to potentially improve fat graft survival.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.