Biochemical basis of Quantum-like neuronal dynamics

Q3 Engineering Brain multiphysics Pub Date : 2020-11-01 DOI:10.1016/j.brain.2020.100017
P.A. Deymier , K. Runge
{"title":"Biochemical basis of Quantum-like neuronal dynamics","authors":"P.A. Deymier ,&nbsp;K. Runge","doi":"10.1016/j.brain.2020.100017","DOIUrl":null,"url":null,"abstract":"<div><p>The nervous system is a complex dynamical system that incorporates higher order biology (e.g., multicellular architecture) and lower-order biology (e.g., intra cellular pathway) that can be modeled via classical laws such as reaction-diffusion models. Simple reaction-diffusion models of neuronal tissue are shown to support bio-chemical wave effects that are analogous to quantum phenomena. These phenomena include quantum-like superpositions and classical entanglement which will not be affected by decoherence n the wet and warm brain environment. These classical phenomena could enable quantum-like complexity of brain functions. Conventional reaction-diffusion models of biological tissues challenge the current quantum brain hypothesis and suggest that the brain should perhaps be thought of as a classical quantum-like system.</p></div><div><h3>Statement of Significance</h3><p>This manuscript introduces the notion of nonseparability (classical entanglement) in the case of biochemical waves in arrays of coupled axons. We use a linear reaction-diffusion model with cross diffusion to address nonseparability between degrees of freedom (along and across the axon array). Perturbation theory applied to a nonlinear model with quadratic nonlinearity is used to illustrate nonseparability between modes along the axons. This paper suggests that the brain should perhaps be thought of as a classical quantum-like system.</p></div>","PeriodicalId":72449,"journal":{"name":"Brain multiphysics","volume":"1 ","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.brain.2020.100017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain multiphysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666522020300046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The nervous system is a complex dynamical system that incorporates higher order biology (e.g., multicellular architecture) and lower-order biology (e.g., intra cellular pathway) that can be modeled via classical laws such as reaction-diffusion models. Simple reaction-diffusion models of neuronal tissue are shown to support bio-chemical wave effects that are analogous to quantum phenomena. These phenomena include quantum-like superpositions and classical entanglement which will not be affected by decoherence n the wet and warm brain environment. These classical phenomena could enable quantum-like complexity of brain functions. Conventional reaction-diffusion models of biological tissues challenge the current quantum brain hypothesis and suggest that the brain should perhaps be thought of as a classical quantum-like system.

Statement of Significance

This manuscript introduces the notion of nonseparability (classical entanglement) in the case of biochemical waves in arrays of coupled axons. We use a linear reaction-diffusion model with cross diffusion to address nonseparability between degrees of freedom (along and across the axon array). Perturbation theory applied to a nonlinear model with quadratic nonlinearity is used to illustrate nonseparability between modes along the axons. This paper suggests that the brain should perhaps be thought of as a classical quantum-like system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子样神经元动力学的生化基础
神经系统是一个复杂的动力系统,它结合了高阶生物学(如多细胞结构)和低阶生物学(如细胞内通路),可以通过经典定律(如反应扩散模型)来建模。神经组织的简单反应-扩散模型被证明支持类似于量子现象的生化波效应。这些现象包括在潮湿和温暖的大脑环境中不受退相干影响的类量子叠加和经典纠缠。这些经典现象可以使大脑功能具有量子般的复杂性。传统的生物组织反应扩散模型挑战了当前的量子脑假说,并提出大脑或许应该被认为是一个经典的类量子系统。本文介绍了在耦合轴突阵列中生化波的不可分离性(经典纠缠)的概念。我们使用具有交叉扩散的线性反应扩散模型来解决自由度之间的不可分离性(沿轴突阵列和跨轴突阵列)。应用微扰理论对二次非线性非线性模型进行了分析,说明了轴突上模态之间的不可分性。这篇论文表明,大脑或许应该被认为是一个经典的类量子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain multiphysics
Brain multiphysics Physics and Astronomy (General), Modelling and Simulation, Neuroscience (General), Biomedical Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
68 days
期刊最新文献
Diffusive secondary injuries in neuronal networks following a blast impact: A morphological and electrophysiological study using a TBI-on-a-Chip model Two for tau: Automated model discovery reveals two-stage tau aggregation dynamics in Alzheimer’s disease Scaling in the brain Quantifying CSF Dynamics disruption in idiopathic normal pressure hydrocephalus using phase lag between transmantle pressure and volumetric flow rate Increased hindbrain motion in Chiari I malformation patients measured through 3D amplified MRI (3D aMRI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1