Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients

Himanshi Allahabadi;Julia Amann;Isabelle Balot;Andrea Beretta;Charles Binkley;Jonas Bozenhard;Frédérick Bruneault;James Brusseau;Sema Candemir;Luca Alessandro Cappellini;Subrata Chakraborty;Nicoleta Cherciu;Christina Cociancig;Megan Coffee;Irene Ek;Leonardo Espinosa-Leal;Davide Farina;Geneviève Fieux-Castagnet;Thomas Frauenfelder;Alessio Gallucci;Guya Giuliani;Adam Golda;Irmhild van Halem;Elisabeth Hildt;Sune Holm;Georgios Kararigas;Sébastien A. Krier;Ulrich Kühne;Francesca Lizzi;Vince I. Madai;Aniek F. Markus;Serg Masis;Emilie Wiinblad Mathez;Francesco Mureddu;Emanuele Neri;Walter Osika;Matiss Ozols;Cecilia Panigutti;Brendan Parent;Francesca Pratesi;Pedro A. Moreno-Sánchez;Giovanni Sartor;Mattia Savardi;Alberto Signoroni;Hanna-Maria Sormunen;Andy Spezzatti;Adarsh Srivastava;Annette F. Stephansen;Lau Bee Theng;Jesmin Jahan Tithi;Jarno Tuominen;Steven Umbrello;Filippo Vaccher;Dennis Vetter;Magnus Westerlund;Renee Wurth;Roberto V. Zicari
{"title":"Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients","authors":"Himanshi Allahabadi;Julia Amann;Isabelle Balot;Andrea Beretta;Charles Binkley;Jonas Bozenhard;Frédérick Bruneault;James Brusseau;Sema Candemir;Luca Alessandro Cappellini;Subrata Chakraborty;Nicoleta Cherciu;Christina Cociancig;Megan Coffee;Irene Ek;Leonardo Espinosa-Leal;Davide Farina;Geneviève Fieux-Castagnet;Thomas Frauenfelder;Alessio Gallucci;Guya Giuliani;Adam Golda;Irmhild van Halem;Elisabeth Hildt;Sune Holm;Georgios Kararigas;Sébastien A. Krier;Ulrich Kühne;Francesca Lizzi;Vince I. Madai;Aniek F. Markus;Serg Masis;Emilie Wiinblad Mathez;Francesco Mureddu;Emanuele Neri;Walter Osika;Matiss Ozols;Cecilia Panigutti;Brendan Parent;Francesca Pratesi;Pedro A. Moreno-Sánchez;Giovanni Sartor;Mattia Savardi;Alberto Signoroni;Hanna-Maria Sormunen;Andy Spezzatti;Adarsh Srivastava;Annette F. Stephansen;Lau Bee Theng;Jesmin Jahan Tithi;Jarno Tuominen;Steven Umbrello;Filippo Vaccher;Dennis Vetter;Magnus Westerlund;Renee Wurth;Roberto V. Zicari","doi":"10.1109/TTS.2022.3195114","DOIUrl":null,"url":null,"abstract":"This article’s main contributions are twofold: 1) to demonstrate how to apply the general European Union’s High-Level Expert Group’s (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does “trustworthy AI” mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient’s lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.","PeriodicalId":73324,"journal":{"name":"IEEE transactions on technology and society","volume":"3 4","pages":"272-289"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/f9/tts-zicari-3195114.PMC9762021.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on technology and society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9845195/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article’s main contributions are twofold: 1) to demonstrate how to apply the general European Union’s High-Level Expert Group’s (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare and 2) to investigate the research question of what does “trustworthy AI” mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multiregional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient’s lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia, Italy, since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses sociotechnical scenarios to identify ethical, technical, and domain-specific issues in the use of the AI system in the context of the pandemic.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估新冠肺炎时代值得信赖的人工智能:深度学习预测新冠肺炎患者肺损害程度的多区域评分
本文的主要贡献有两个:1)演示如何在医疗保健领域的实践中应用欧盟高级专家组(EU HLEG)关于可信赖人工智能的一般指导方针;2)调查新冠肺炎大流行时“可信赖的人工智能”意味着什么的研究问题。为此,我们提出了一项事后自我评估的结果,以评估人工智能系统的可信度,该系统用于预测传达新冠肺炎患者肺部损害程度的多区域评分,该系统由一个跨学科团队开发并验证,该团队的成员来自学术界、公立医院和行业,在大流行期间。人工智能系统旨在帮助放射科医生评估和交流胸部X光片对患者肺部损伤的严重程度。自2020年12月疫情期间以来,它已在意大利布雷西亚ASST Spedali Civili诊所的放射科进行了实验部署。我们在事后评估中应用的方法称为Z-Inspection®,它使用社会技术场景来确定在疫情背景下使用人工智能系统时的道德、技术和特定领域问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on Technology and Society Vol. 5 Front Cover Table of Contents IEEE Transactions on Technology and Society Publication Information In This Special: Co-Designing Consumer Technology With Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1