Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model.
{"title":"Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model.","authors":"Vanrohlu Nicy, Milirani Das, Guruswami Gurusubramanian, Pradip Mondal, Vikas Kumar Roy","doi":"10.1080/17435390.2022.2133647","DOIUrl":null,"url":null,"abstract":"<p><p>Although copper is an indispensable trace metal for biological functions, its excess exposure causes hazardous effects on health. Copper in the form of nanoparticles (CuNPs) is widely used at present and therefore, the living organism is at continuous risk of its adverse effect. The prolonged treatment of CuNPs has not been evaluated yet on the male reproductive system. To demonstrate the combined adverse effects and the mechanism of copper nanoparticles (CuNPs), three doses of CuNPs, 10, 100 and 200 mg/kg were orally given to mice for 70 days. The present study demonstrated that CuNPs decreased the sperm quality parameters, male circulating hormones, induces testicular damages, increased oxidative stress, apoptosis, decreases antioxidant enzymes, germ cell proliferation, and increases the expression of 8-oxoguanine DNA glycosylase-1 (OGG1), apelin receptor (APJ) as well. CuNPs also down-regulated the expression of AR and Erα in the testis. These results suggest that CuNPs manifested their adverse effect on testis via modulating steroid and cytokine (apelin) receptors. The adverse effect of testis was most pronounced at the highest dose (200 mg/kg) of CuNPs, however, other doses show a less toxic effect on various parameters. In conclusion, results indicated that CuNPs may impair spermatogenesis via oxidative stress-mediated DNA damage and germ cell apoptosis at high doses.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":"16 5","pages":"658-678"},"PeriodicalIF":3.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2022.2133647","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Although copper is an indispensable trace metal for biological functions, its excess exposure causes hazardous effects on health. Copper in the form of nanoparticles (CuNPs) is widely used at present and therefore, the living organism is at continuous risk of its adverse effect. The prolonged treatment of CuNPs has not been evaluated yet on the male reproductive system. To demonstrate the combined adverse effects and the mechanism of copper nanoparticles (CuNPs), three doses of CuNPs, 10, 100 and 200 mg/kg were orally given to mice for 70 days. The present study demonstrated that CuNPs decreased the sperm quality parameters, male circulating hormones, induces testicular damages, increased oxidative stress, apoptosis, decreases antioxidant enzymes, germ cell proliferation, and increases the expression of 8-oxoguanine DNA glycosylase-1 (OGG1), apelin receptor (APJ) as well. CuNPs also down-regulated the expression of AR and Erα in the testis. These results suggest that CuNPs manifested their adverse effect on testis via modulating steroid and cytokine (apelin) receptors. The adverse effect of testis was most pronounced at the highest dose (200 mg/kg) of CuNPs, however, other doses show a less toxic effect on various parameters. In conclusion, results indicated that CuNPs may impair spermatogenesis via oxidative stress-mediated DNA damage and germ cell apoptosis at high doses.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.