Microbial chemolithoautotrophs are abundant in salt marsh sediment following long-term experimental nitrate enrichment.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY Fems Microbiology Letters Pub Date : 2023-01-17 DOI:10.1093/femsle/fnad082
Joseph H Vineis, Ashley N Bulseco, Jennifer L Bowen
{"title":"Microbial chemolithoautotrophs are abundant in salt marsh sediment following long-term experimental nitrate enrichment.","authors":"Joseph H Vineis,&nbsp;Ashley N Bulseco,&nbsp;Jennifer L Bowen","doi":"10.1093/femsle/fnad082","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term anthropogenic nitrate (NO3-) enrichment is a serious threat to many coastal systems. Nitrate reduction coupled with the oxidation of reduced forms of sulfur is conducted by chemolithoautotrophic microbial populations in a process that decreases nitrogen (N) pollution. However, little is known about the diversity and distribution of microbes capable of carbon fixation within salt marsh sediment and how they respond to long-term NO3- loading. We used genome-resolved metagenomics to characterize the distribution, phylogenetic relationships, and adaptations important to microbial communities within NO3--enriched sediment. We found NO3- reducing sulfur oxidizers became dominant members of the microbial community throughout the top 25 cm of the sediment following long-term NO3- enrichment. We also found that most of the chemolithoautotrophic genomes recovered contained striking metabolic versatility, including the potential for complete denitrification and evidence of mixotrophy. Phylogenetic reconstruction indicated that similar carbon fixation strategies and metabolic versatility can be found in several phylogenetic groups, but the genomes recovered here represent novel organisms. Our results suggest that the role of chemolithoautotrophy within NO3--enriched salt marsh sediments may be quantitatively more important for retaining carbon and filtering NO3- than previously indicated and further inquiry is needed to explicitly measure their contribution to carbon turnover and removal of N pollution.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":"370 ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnad082","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Long-term anthropogenic nitrate (NO3-) enrichment is a serious threat to many coastal systems. Nitrate reduction coupled with the oxidation of reduced forms of sulfur is conducted by chemolithoautotrophic microbial populations in a process that decreases nitrogen (N) pollution. However, little is known about the diversity and distribution of microbes capable of carbon fixation within salt marsh sediment and how they respond to long-term NO3- loading. We used genome-resolved metagenomics to characterize the distribution, phylogenetic relationships, and adaptations important to microbial communities within NO3--enriched sediment. We found NO3- reducing sulfur oxidizers became dominant members of the microbial community throughout the top 25 cm of the sediment following long-term NO3- enrichment. We also found that most of the chemolithoautotrophic genomes recovered contained striking metabolic versatility, including the potential for complete denitrification and evidence of mixotrophy. Phylogenetic reconstruction indicated that similar carbon fixation strategies and metabolic versatility can be found in several phylogenetic groups, but the genomes recovered here represent novel organisms. Our results suggest that the role of chemolithoautotrophy within NO3--enriched salt marsh sediments may be quantitatively more important for retaining carbon and filtering NO3- than previously indicated and further inquiry is needed to explicitly measure their contribution to carbon turnover and removal of N pollution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经过长期的硝酸盐富集实验,盐沼沉积物中有大量的微生物化石自养生物。
长期人为硝酸盐(NO3-)富集对许多沿海系统构成严重威胁。硝酸盐还原与还原形式的硫的氧化相结合是由化学自养微生物种群在减少氮(N)污染的过程中进行的。然而,人们对盐沼沉积物中能够固定碳的微生物的多样性和分布以及它们对长期NO3负荷的反应知之甚少。我们使用基因组解析的宏基因组学来表征NO3富集沉积物中微生物群落的分布、系统发育关系和重要适应。我们发现,在长期富集NO3后,NO3还原硫氧化剂成为沉积物顶部25厘米微生物群落的主要成员。我们还发现,大多数回收的化学-石自养基因组都具有惊人的代谢多样性,包括完全脱氮的潜力和混合营养的证据。系统发育重建表明,在几个系统发育群中可以发现类似的碳固定策略和代谢多样性,但这里回收的基因组代表了新的生物体。我们的研究结果表明,化学-岩石自养在富含NO3-的盐沼沉积物中的作用可能在数量上比以前表明的更重要,并且需要进一步的研究来明确衡量它们对碳转换和去除氮污染的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
期刊最新文献
Low bentonite biomass leads to inconsistent culture-based estimates of microbial abundances. Putting science centre stage - Learning together for our future. Efficient production of ectoine using isolated Halomonas smyrnensis IIIM VA-6 at the reduced salinity approach. The first identification of the epidemic Clostridioides difficile PCR ribotype 027 strain in Brazil: a case report of colitis in a patient from a public hospital in Rio de Janeiro. Genotypic and phenotypic comparison of Neisseria meningitidis carriage and invasive disease isolates contemporaneously collected in the Netherlands.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1