Reza Iranzad, Xiao Liu, W Art Chaovalitwongse, Daniel Hippe, Shouyi Wang, Jie Han, Phawis Thammasorn, Chunyan Duan, Jing Zeng, Stephen Bowen
{"title":"Gradient Boosted Trees for Spatial Data and Its Application to Medical Imaging Data.","authors":"Reza Iranzad, Xiao Liu, W Art Chaovalitwongse, Daniel Hippe, Shouyi Wang, Jie Han, Phawis Thammasorn, Chunyan Duan, Jing Zeng, Stephen Bowen","doi":"10.1080/24725579.2021.1995536","DOIUrl":null,"url":null,"abstract":"<p><p>Boosting Trees are one of the most successful statistical learning approaches that involve sequentially growing an ensemble of simple regression trees (\"weak learners\"). This paper proposes a gradient Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information. Boost-S integrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Each tree is constructed by solving a regularized optimization problem, where the objective function takes into account the underlying spatial correlation and involves two penalty terms on tree complexity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-positron emission tomography) imaging data collected from clinical trials of cancer chemoradiotherapy. Our numerical investigations successfully demonstrate the advantages of the proposed Boost-S over existing approaches for this particular application.</p>","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"12 3","pages":"165-179"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615557/pdf/nihms-1803573.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1995536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 5
Abstract
Boosting Trees are one of the most successful statistical learning approaches that involve sequentially growing an ensemble of simple regression trees ("weak learners"). This paper proposes a gradient Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information. Boost-S integrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Each tree is constructed by solving a regularized optimization problem, where the objective function takes into account the underlying spatial correlation and involves two penalty terms on tree complexity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-positron emission tomography) imaging data collected from clinical trials of cancer chemoradiotherapy. Our numerical investigations successfully demonstrate the advantages of the proposed Boost-S over existing approaches for this particular application.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.