{"title":"Isolation, characterization and differentiation of dermal papilla cells from Small-tail Han sheep.","authors":"Xinhui Luo, Jianqiang Liu, Pengju Zhang, Yongsheng Yu, Bin Wu, Qi Jia, Yanguang Liu, Cheng Xiao, Yang Cao, Haiguo Jin, Lichun Zhang","doi":"10.1080/10495398.2022.2156873","DOIUrl":null,"url":null,"abstract":"<p><p>Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":" ","pages":"3475-3482"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2022.2156873","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulates hair follicle development, growth and regeneration. Successfully isolated and cultured DPCs from Small-tail Han sheep could provide a good model for the study of hair follicle development mechanism in vitro. DPCs were isolated using enzyme digestion and dissecting microscope from Small-tail Han sheep. Adherent cells were identified by cell characteristics, particular gene expression, differentiation capability to adipocyte and osteoblast using specific differentiation mediums. Additionally, flow cytometry was used to detect the cell cycle of DPCs. Cells originating from the dermal papilla showed the morphological appearance of mesenchymal cells (fibroblast-like cells). Purified DPCs were positive for α-SMA (α smooth muscle actin) and vimentin; in addition to their strong proliferation abilities in vitro, these DPCs can be differentiated into adipocyte and osteoblasts lineage under appropriate culture condition. DPCs were successfully isolated and subcultured from Small-tail Han sheep, which exhibited progenitor cell features and multiple differentiation potency. It provides a material for studying the molecular mechanism of hair follicle development and hair cycle, which will promote wool production in the future.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes