The role of paracrine crosstalk between myeloid and endothelial cells in myocardial angiogenesis and infarcted heart repair.

Kyu-Won Cho, Seongho Bae, Young-Sup Yoon
{"title":"The role of paracrine crosstalk between myeloid and endothelial cells in myocardial angiogenesis and infarcted heart repair.","authors":"Kyu-Won Cho, Seongho Bae, Young-Sup Yoon","doi":"10.20517/jca.2022.37","DOIUrl":null,"url":null,"abstract":"Ischemic heart disease is one of the leading causes of morbidity and mortality in the USA. It is mainly caused by the narrowing or occlusion of coronary arteries by plaque buildup, leading to a limited supply of oxygen and nutrients to the cardiac muscle. This results in necrotic death of cardiomyocytes (CMs). CM necrosis leads to the production of cytokines, chemokines, and damage-associated molecular patterns (DAMPs), which recruit immune cells from the bone marrow (BM) [1] . Infiltrated immune cells secrete proteases and cytokines that mediate inflammatory responses and fibroblast activation [1] . Subsequently, the damaged cardiac muscle is replaced with extracellular matrix produced by activated fibroblasts, leading to myocardial remodeling and dysfunction. Attempts to restore blood vessels (a.k.a. therapeutic angiogenesis) reduced fibrosis and improved the performance of the infarcted heart [2] . A possible underlying mechanism is that the supply of oxygen and nutrients via new blood vessels would preserve CM survival and support the health and function of remaining cardiovascular cells, thereby preventing adverse cardiac remodeling. Thus, therapeutic angiogenesis has been considered one of the important therapeutic approaches for ischemic heart diseases. Investigations","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2022.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic heart disease is one of the leading causes of morbidity and mortality in the USA. It is mainly caused by the narrowing or occlusion of coronary arteries by plaque buildup, leading to a limited supply of oxygen and nutrients to the cardiac muscle. This results in necrotic death of cardiomyocytes (CMs). CM necrosis leads to the production of cytokines, chemokines, and damage-associated molecular patterns (DAMPs), which recruit immune cells from the bone marrow (BM) [1] . Infiltrated immune cells secrete proteases and cytokines that mediate inflammatory responses and fibroblast activation [1] . Subsequently, the damaged cardiac muscle is replaced with extracellular matrix produced by activated fibroblasts, leading to myocardial remodeling and dysfunction. Attempts to restore blood vessels (a.k.a. therapeutic angiogenesis) reduced fibrosis and improved the performance of the infarcted heart [2] . A possible underlying mechanism is that the supply of oxygen and nutrients via new blood vessels would preserve CM survival and support the health and function of remaining cardiovascular cells, thereby preventing adverse cardiac remodeling. Thus, therapeutic angiogenesis has been considered one of the important therapeutic approaches for ischemic heart diseases. Investigations

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
髓细胞和内皮细胞间的旁分泌串扰在心肌血管生成和心肌梗死修复中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. Targeting vascular senescence in cardiovascular disease with aging. The role of brown adipose tissue in mediating healthful longevity. From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1