Eukaryotic gene regulation at equilibrium, or non?

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2022-09-01 DOI:10.1016/j.coisb.2022.100435
Benjamin Zoller , Thomas Gregor , Gašper Tkačik
{"title":"Eukaryotic gene regulation at equilibrium, or non?","authors":"Benjamin Zoller ,&nbsp;Thomas Gregor ,&nbsp;Gašper Tkačik","doi":"10.1016/j.coisb.2022.100435","DOIUrl":null,"url":null,"abstract":"<div><p>Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory—theory that prescribes rather than just describes—in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802646/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245231002200021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory—theory that prescribes rather than just describes—in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真核生物基因调控是否处于平衡状态?
假设转录因子平衡结合的转录调节模型在预测真核生物基因序列表达方面不如在细菌中成功。这可能是由于真核生物调节的非平衡性质。不幸的是,可能的非平衡机制的空间是巨大的,而且主要是无趣的。因此,关键问题是如何有效地导航这个空间,以关注与生物学相关的机制和模型。在这篇综述中,我们提倡理论的规范性作用-理论规定而不仅仅是描述-提供这样一个焦点。理论应该扩展其职权范围,超越从数据中推断机制模型,而应该确定可能已经被进化选择的非平衡基因调控方案,尽管它们消耗能量,因为它们精确、可靠、快速,或者以其他方式优于平衡状态下的调控。我们通过提供模拟代码的玩具示例来说明我们的推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1