Hao Guan, Siyuan Liu, Weili Lin, Pew-Thian Yap, Mingxia Liu
{"title":"Fast Image-Level MRI Harmonization via Spectrum Analysis.","authors":"Hao Guan, Siyuan Liu, Weili Lin, Pew-Thian Yap, Mingxia Liu","doi":"10.1007/978-3-031-21014-3_21","DOIUrl":null,"url":null,"abstract":"<p><p>Pooling structural magnetic resonance imaging (MRI) data from different imaging sites helps increase sample size to facilitate machine learning based neuroimage analysis, but usually suffers from significant cross-site and/or cross-scanner data heterogeneity. Existing studies often focus on reducing cross-site and/or cross-scanner heterogeneity at handcrafted feature level targeting specific tasks (e.g., classification or segmentation), limiting their adaptability in clinical practice. Research on image-level MRI harmonization targeting a broad range of applications is very limited. In this paper, we develop a spectrum swapping based image-level MRI harmonization (SSIMH) framework. Different from previous work, our method focuses on alleviating cross-scanner heterogeneity at <i>raw image level</i>. We first construct <i>spectrum analysis</i> to explore the influences of different frequency components on MRI harmonization. We then utilize a <i>spectrum swapping</i> method for the harmonization of raw MRIs acquired by different scanners. Our method does not rely on complex model training, and can be directly applied to fast real-time MRI harmonization. Experimental results on T1- and T2-weighted MRIs of phantom subjects acquired by using different scanners from the public ABCD dataset suggest the effectiveness of our method in structural MRI harmonization at the image level.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"13583 ","pages":"201-209"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805301/pdf/nihms-1859376.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-21014-3_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pooling structural magnetic resonance imaging (MRI) data from different imaging sites helps increase sample size to facilitate machine learning based neuroimage analysis, but usually suffers from significant cross-site and/or cross-scanner data heterogeneity. Existing studies often focus on reducing cross-site and/or cross-scanner heterogeneity at handcrafted feature level targeting specific tasks (e.g., classification or segmentation), limiting their adaptability in clinical practice. Research on image-level MRI harmonization targeting a broad range of applications is very limited. In this paper, we develop a spectrum swapping based image-level MRI harmonization (SSIMH) framework. Different from previous work, our method focuses on alleviating cross-scanner heterogeneity at raw image level. We first construct spectrum analysis to explore the influences of different frequency components on MRI harmonization. We then utilize a spectrum swapping method for the harmonization of raw MRIs acquired by different scanners. Our method does not rely on complex model training, and can be directly applied to fast real-time MRI harmonization. Experimental results on T1- and T2-weighted MRIs of phantom subjects acquired by using different scanners from the public ABCD dataset suggest the effectiveness of our method in structural MRI harmonization at the image level.