{"title":"Postnatal development of cerebrovascular structure and the neurogliovascular unit.","authors":"Vanessa Coelho-Santos, Andy Y Shih","doi":"10.1002/wdev.363","DOIUrl":null,"url":null,"abstract":"<p><p>The unceasing metabolic demands of brain function are supported by an intricate three-dimensional network of arterioles, capillaries, and venules, designed to effectively distribute blood to all neurons and to provide shelter from harmful molecules in the blood. The development and maturation of this microvasculature involves a complex interplay between endothelial cells with nearly all other brain cell types (pericytes, astrocytes, microglia, and neurons), orchestrated throughout embryogenesis and the first few weeks after birth in mice. Both the expansion and regression of vascular networks occur during the postnatal period of cerebrovascular remodeling. Pial vascular networks on the brain surface are dense at birth and are then selectively pruned during the postnatal period, with the most dramatic changes occurring in the pial venular network. This is contrasted to an expansion of subsurface capillary networks through the induction of angiogenesis. Concurrent with changes in vascular structure, the integration and cross talk of neurovascular cells lead to establishment of blood-brain barrier integrity and neurovascular coupling to ensure precise control of macromolecular passage and metabolic supply. While we still possess a limited understanding of the rules that control cerebrovascular development, we can begin to assemble a view of how this complex process evolves, as well as identify gaps in knowledge for the next steps of research. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: General Principles.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"9 2","pages":"e363"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.363","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 72
Abstract
The unceasing metabolic demands of brain function are supported by an intricate three-dimensional network of arterioles, capillaries, and venules, designed to effectively distribute blood to all neurons and to provide shelter from harmful molecules in the blood. The development and maturation of this microvasculature involves a complex interplay between endothelial cells with nearly all other brain cell types (pericytes, astrocytes, microglia, and neurons), orchestrated throughout embryogenesis and the first few weeks after birth in mice. Both the expansion and regression of vascular networks occur during the postnatal period of cerebrovascular remodeling. Pial vascular networks on the brain surface are dense at birth and are then selectively pruned during the postnatal period, with the most dramatic changes occurring in the pial venular network. This is contrasted to an expansion of subsurface capillary networks through the induction of angiogenesis. Concurrent with changes in vascular structure, the integration and cross talk of neurovascular cells lead to establishment of blood-brain barrier integrity and neurovascular coupling to ensure precise control of macromolecular passage and metabolic supply. While we still possess a limited understanding of the rules that control cerebrovascular development, we can begin to assemble a view of how this complex process evolves, as well as identify gaps in knowledge for the next steps of research. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: General Principles.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.