John Grimes, Piotr Szul, Alejandro Metke-Jimenez, Michael Lawley, Kylynn Loi
{"title":"Pathling: analytics on FHIR.","authors":"John Grimes, Piotr Szul, Alejandro Metke-Jimenez, Michael Lawley, Kylynn Loi","doi":"10.1186/s13326-022-00277-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health data analytics is an area that is facing rapid change due to the acceleration of digitization of the health sector, and the changing landscape of health data and clinical terminology standards. Our research has identified a need for improved tooling to support analytics users in the task of analyzing Fast Healthcare Interoperability Resources (FHIR<sup>®</sup>) data and associated clinical terminology.</p><p><strong>Results: </strong>A server implementation was developed, featuring a FHIR API with new operations designed to support exploratory data analysis (EDA), advanced patient cohort selection and data preparation tasks. Integration with a FHIR Terminology Service is also supported, allowing users to incorporate knowledge from rich terminologies such as SNOMED CT within their queries. A prototype user interface for EDA was developed, along with visualizations in support of a health data analysis project.</p><p><strong>Conclusions: </strong>Experience with applying this technology within research projects and towards the development of analytics-enabled applications provides a preliminary indication that the FHIR Analytics API pattern implemented by Pathling is a valuable abstraction for data scientists and software developers within the health care domain. Pathling contributes towards the value proposition for the use of FHIR within health data analytics, and assists with the use of complex clinical terminologies in that context.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"13 1","pages":"23"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455941/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-022-00277-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Health data analytics is an area that is facing rapid change due to the acceleration of digitization of the health sector, and the changing landscape of health data and clinical terminology standards. Our research has identified a need for improved tooling to support analytics users in the task of analyzing Fast Healthcare Interoperability Resources (FHIR®) data and associated clinical terminology.
Results: A server implementation was developed, featuring a FHIR API with new operations designed to support exploratory data analysis (EDA), advanced patient cohort selection and data preparation tasks. Integration with a FHIR Terminology Service is also supported, allowing users to incorporate knowledge from rich terminologies such as SNOMED CT within their queries. A prototype user interface for EDA was developed, along with visualizations in support of a health data analysis project.
Conclusions: Experience with applying this technology within research projects and towards the development of analytics-enabled applications provides a preliminary indication that the FHIR Analytics API pattern implemented by Pathling is a valuable abstraction for data scientists and software developers within the health care domain. Pathling contributes towards the value proposition for the use of FHIR within health data analytics, and assists with the use of complex clinical terminologies in that context.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.