Jimin Park, Sangjun Lee, Dasom Choi, Chang-Hwan Im
{"title":"Enhancement of dynamic visual acuity using transcranial alternating current stimulation with gamma burst entrained on alpha wave troughs.","authors":"Jimin Park, Sangjun Lee, Dasom Choi, Chang-Hwan Im","doi":"10.1186/s12993-023-00215-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cross-frequency phase-amplitude coupling (PAC) of cortical oscillations is observed within and across cortical regions during higher-order cognitive processes. Particularly, the PAC of alpha and gamma waves in the occipital cortex is closely associated with visual perception. In theory, gamma oscillation is a neuronal representation of visual stimuli, which drives the duty cycle of visual perception together with alpha oscillation. Therefore, it is believed that the timing of entrainment in alpha-gamma PAC may play a critical role in the performance of visual perception. We hypothesized that transcranial alternating current stimulation (tACS) with gamma waves entrained at the troughs of alpha waves would enhance the dynamic visual acuity (DVA).</p><p><strong>Method: </strong>We attempted to modulate the performance of DVA by using tACS. The waveforms of the tACS were tailored to target PAC over the occipital cortex. The waveforms contained gamma (80 Hz) waves oscillating at either the peaks or troughs of alpha (10 Hz) waves. Participants performed computerized DVA task before, immediately after, and 10 min after each stimulation sessions. EEG and EOG were recorded during the DVA task to assess inter-trial phase coherence (ITPC), the alpha-gamma PAC at occipital site and the eye movements.</p><p><strong>Results: </strong>tACS with gamma waves entrained at alpha troughs effectively enhanced DVA, while the tACS with gamma waves entrained at alpha peaks did not affect DVA performance. Importantly, analyses of EEG and EOG showed that the enhancement of DVA performance originated solely from the neuromodulatory effects, and was not related to the modulation of saccadic eye movements. Consequently, DVA, one of the higher-order cognitive abilities, was successfully modulated using tACS with a tailored waveform.</p><p><strong>Conclusions: </strong>Our experimental results demonstrated that DVA performances were enhanced when tACS with gamma bursts entrained on alpha wave troughs were applied over the occipital cortex. Our findings suggest that using tACS with tailored waveforms, modulation of complex neuronal features could effectively enhance higher-order cognitive abilities such as DVA, which has never been modulated with conventional noninvasive brain stimulation methods.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"13"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-023-00215-w","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cross-frequency phase-amplitude coupling (PAC) of cortical oscillations is observed within and across cortical regions during higher-order cognitive processes. Particularly, the PAC of alpha and gamma waves in the occipital cortex is closely associated with visual perception. In theory, gamma oscillation is a neuronal representation of visual stimuli, which drives the duty cycle of visual perception together with alpha oscillation. Therefore, it is believed that the timing of entrainment in alpha-gamma PAC may play a critical role in the performance of visual perception. We hypothesized that transcranial alternating current stimulation (tACS) with gamma waves entrained at the troughs of alpha waves would enhance the dynamic visual acuity (DVA).
Method: We attempted to modulate the performance of DVA by using tACS. The waveforms of the tACS were tailored to target PAC over the occipital cortex. The waveforms contained gamma (80 Hz) waves oscillating at either the peaks or troughs of alpha (10 Hz) waves. Participants performed computerized DVA task before, immediately after, and 10 min after each stimulation sessions. EEG and EOG were recorded during the DVA task to assess inter-trial phase coherence (ITPC), the alpha-gamma PAC at occipital site and the eye movements.
Results: tACS with gamma waves entrained at alpha troughs effectively enhanced DVA, while the tACS with gamma waves entrained at alpha peaks did not affect DVA performance. Importantly, analyses of EEG and EOG showed that the enhancement of DVA performance originated solely from the neuromodulatory effects, and was not related to the modulation of saccadic eye movements. Consequently, DVA, one of the higher-order cognitive abilities, was successfully modulated using tACS with a tailored waveform.
Conclusions: Our experimental results demonstrated that DVA performances were enhanced when tACS with gamma bursts entrained on alpha wave troughs were applied over the occipital cortex. Our findings suggest that using tACS with tailored waveforms, modulation of complex neuronal features could effectively enhance higher-order cognitive abilities such as DVA, which has never been modulated with conventional noninvasive brain stimulation methods.
期刊介绍:
A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.