Antenatal Ureaplasma infection induces ovine small intestinal goblet cell defects: a strong link with NEC pathology.

IF 3.6 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Tissue Barriers Pub Date : 2023-10-02 Epub Date: 2022-12-28 DOI:10.1080/21688370.2022.2158016
Charlotte van Gorp, Ilse H de Lange, Matthias C Hütten, Carmen López-Iglesias, Kimberly Ri Massy, Lilian Kessels, Boris Kramer, Willine van de Wetering, Brad Spiller, George M Birchenough, Wim G van Gemert, Luc J Zimmermann, Tim Gam Wolfs
{"title":"Antenatal Ureaplasma infection induces ovine small intestinal goblet cell defects: a strong link with NEC pathology.","authors":"Charlotte van Gorp,&nbsp;Ilse H de Lange,&nbsp;Matthias C Hütten,&nbsp;Carmen López-Iglesias,&nbsp;Kimberly Ri Massy,&nbsp;Lilian Kessels,&nbsp;Boris Kramer,&nbsp;Willine van de Wetering,&nbsp;Brad Spiller,&nbsp;George M Birchenough,&nbsp;Wim G van Gemert,&nbsp;Luc J Zimmermann,&nbsp;Tim Gam Wolfs","doi":"10.1080/21688370.2022.2158016","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of the intestinal mucus barrier and intestinal epithelial endoplasmic reticulum (ER) stress contribute to necrotizing enterocolitis (NEC). Previously, we observed intestinal goblet cell loss and increased intestinal epithelial ER stress following chorioamnionitis. Here, we investigated how chorioamnionitis affects goblet cells by assessing their cellular characteristics. Importantly, goblet cell features are compared with those in clinical NEC biopsies. Mucus thickness was assessed as read-out of goblet cell function. Fetal lambs were intra-amniotically (IA) infected for 7d at 122 gestational age with <i>Ureaplasma parvum serovar-3</i>, the main microorganism clinically associated with chorioamnionitis. After preterm delivery, mucus thickness, goblet cell numbers, gut inflammation, epithelial proliferation and apoptosis and intestinal epithelial ER stress were investigated in the terminal ileum. Next, goblet cell morphological alterations (TEM) were studied and compared to human NEC samples. Ileal mucus thickness and goblet cell numbers were elevated following IA UP exposure. Increased pro-apoptotic ER stress, detected by elevated CHOP-positive cell counts and disrupted organelle morphology of secretory cells in the intestinal epithelium, was observed in IA UP exposed animals. Importantly, comparable cellular morphological alterations were observed in the ileum from NEC patients. In conclusion, UP-driven chorioamnionitis leads to a thickened ileal mucus layer and mucus hypersecretion from goblet cells. Since this was associated with pro-apoptotic ER stress and organelle disruption, mucus barrier alterations seem to occur at the expense of goblet cell resilience and may therefore predispose to detrimental intestinal outcomes. The remarkable overlap of these <i>in utero</i> findings with observations in NEC patients underscores their clinical relevance.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2158016"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d9/87/KTIB_11_2158016.PMC10606782.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2022.2158016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Disruption of the intestinal mucus barrier and intestinal epithelial endoplasmic reticulum (ER) stress contribute to necrotizing enterocolitis (NEC). Previously, we observed intestinal goblet cell loss and increased intestinal epithelial ER stress following chorioamnionitis. Here, we investigated how chorioamnionitis affects goblet cells by assessing their cellular characteristics. Importantly, goblet cell features are compared with those in clinical NEC biopsies. Mucus thickness was assessed as read-out of goblet cell function. Fetal lambs were intra-amniotically (IA) infected for 7d at 122 gestational age with Ureaplasma parvum serovar-3, the main microorganism clinically associated with chorioamnionitis. After preterm delivery, mucus thickness, goblet cell numbers, gut inflammation, epithelial proliferation and apoptosis and intestinal epithelial ER stress were investigated in the terminal ileum. Next, goblet cell morphological alterations (TEM) were studied and compared to human NEC samples. Ileal mucus thickness and goblet cell numbers were elevated following IA UP exposure. Increased pro-apoptotic ER stress, detected by elevated CHOP-positive cell counts and disrupted organelle morphology of secretory cells in the intestinal epithelium, was observed in IA UP exposed animals. Importantly, comparable cellular morphological alterations were observed in the ileum from NEC patients. In conclusion, UP-driven chorioamnionitis leads to a thickened ileal mucus layer and mucus hypersecretion from goblet cells. Since this was associated with pro-apoptotic ER stress and organelle disruption, mucus barrier alterations seem to occur at the expense of goblet cell resilience and may therefore predispose to detrimental intestinal outcomes. The remarkable overlap of these in utero findings with observations in NEC patients underscores their clinical relevance.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
产前支原体感染诱导绵羊小肠杯状细胞缺陷:与NEC病理学密切相关。
肠粘液屏障的破坏和肠上皮内质网(ER)应激导致坏死性小肠结肠炎(NEC)。此前,我们观察到绒毛膜羊膜炎后肠杯状细胞损失和肠上皮ER应激增加。在这里,我们通过评估杯状细胞的细胞特征来研究绒毛膜羊膜炎如何影响杯状细胞。重要的是,将杯状细胞的特征与临床NEC活检中的特征进行比较。粘液厚度被评估为杯状细胞功能的读数。122胎龄的胎羔羊在羊水内感染细小支原体血清型-3,这是临床上与绒毛膜羊膜炎相关的主要微生物,持续7天。早产后,研究了末端回肠的粘液厚度、杯状细胞数量、肠道炎症、上皮增殖和凋亡以及肠上皮ER应激。接下来,研究杯状细胞形态变化(TEM),并将其与人类NEC样品进行比较。IA UP暴露后,回肠粘液厚度和杯状细胞数量增加。在IA UP暴露的动物中观察到促凋亡ER应激的增加,通过提高CHOP阳性细胞计数和破坏肠上皮分泌细胞的细胞器形态来检测。重要的是,在NEC患者的回肠中观察到了类似的细胞形态变化。总之,UP驱动的绒毛膜羊膜炎导致回肠粘液层增厚和杯状细胞分泌粘液过多。由于这与促凋亡的ER应激和细胞器破坏有关,粘液屏障的改变似乎是以牺牲杯状细胞的弹性为代价的,因此可能会导致有害的肠道结果。这些子宫内发现与NEC患者的观察结果显著重叠,突显了它们的临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
期刊最新文献
Metabolic alterations of endothelial cells under transient and persistent hypoxia: study using a 3D microvessels-on-chip model. Dengue virus NS1 hits hard at the barrier integrity of human cerebral microvascular endothelial cells via cellular microRNA dysregulations. The application of explants, crypts, and organoids as models in intestinal barrier research. Decellularized small intestine scaffolds: a potential xenograft for restoration of intestinal perforation. The amazing axolotl: robust kidney regeneration following acute kidney injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1