In-silico modeling of the interplay between APOE4, NLRP3, and ACE2-SPIKE complex in neurodegeneration between Alzheimer and SARS-CoV: implications for understanding pathogenesis and developing therapeutic strategies.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-11-01 Epub Date: 2023-08-29 DOI:10.1080/07391102.2023.2252094
Sriranjini A S, Ashish Thapliyal, Kumud Pant
{"title":"<i>In-silico</i> modeling of the interplay between APOE4, NLRP3, and ACE2-SPIKE complex in neurodegeneration between Alzheimer and SARS-CoV: implications for understanding pathogenesis and developing therapeutic strategies.","authors":"Sriranjini A S, Ashish Thapliyal, Kumud Pant","doi":"10.1080/07391102.2023.2252094","DOIUrl":null,"url":null,"abstract":"<p><p>The multifaceted interplay between neurodegenerative pathologies, including Alzheimer's disease (AD), and the highly virulent severe acute respiratory syndrome coronavirus (SARS-CoV), is implicated in various conditions. AD and SARS-CoV pathogenesis involve the APOE4 allele, NLRP3 inflammasome, and ACE2-SPIKE complex. APOE4, a genetic polymorphism of the APOE gene, is associated with an increased susceptibility to AD. NLRP3, an inflammatory protein of the innate immune system, plays a pivotal role in immune response cascades. In SARS-CoV, the ACE2 receptor serves as the principal portal for cellular entry, while APOE4 intricately interacts with the ACE2-spike protein complex, enhancing viral internalization process. The interaction of NLRP3 with the ACE2-spike protein complex leads to increased inflammatory signaling. The convergence of APOE4/NLRP3 and ACE2-spike protein complex interactions suggests a possible link between SARS and AD. Therefore, the current research centralizes the association between by utilizing SARS-CoV datasets to explore possible mechanisms that account for the pathogenesis of SARS-CoV and AD. The work is further extended to unveil the molecular interactions of APOE4 and NLRP3 with the ACE2-Spike protein complex at the molecular level by employing molecular dynamics simulation techniques. The therapeutic efficacy of Chyawanprash nutraceuticals is evaluated as their inhibitory potential towards APOE4-ACE2-Spike protein and NLRP3-ACE2-Spike protein complexes. Notably, our simulations unequivocally demonstrate the robust and enduring binding capability of the compound Phyllantidine with the target complexes throughout the simulation period. The findings of the studies further corroborate the primary hypothesis of APOE4 and NLRP3 as driver factors in the pathogenesis of both SARS-CoV and AD. Therefore, this research establishes a paradigm for comprehending the complex interaction between AD and SARS-CoV and lays the groundwork for further study in this domain.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The multifaceted interplay between neurodegenerative pathologies, including Alzheimer's disease (AD), and the highly virulent severe acute respiratory syndrome coronavirus (SARS-CoV), is implicated in various conditions. AD and SARS-CoV pathogenesis involve the APOE4 allele, NLRP3 inflammasome, and ACE2-SPIKE complex. APOE4, a genetic polymorphism of the APOE gene, is associated with an increased susceptibility to AD. NLRP3, an inflammatory protein of the innate immune system, plays a pivotal role in immune response cascades. In SARS-CoV, the ACE2 receptor serves as the principal portal for cellular entry, while APOE4 intricately interacts with the ACE2-spike protein complex, enhancing viral internalization process. The interaction of NLRP3 with the ACE2-spike protein complex leads to increased inflammatory signaling. The convergence of APOE4/NLRP3 and ACE2-spike protein complex interactions suggests a possible link between SARS and AD. Therefore, the current research centralizes the association between by utilizing SARS-CoV datasets to explore possible mechanisms that account for the pathogenesis of SARS-CoV and AD. The work is further extended to unveil the molecular interactions of APOE4 and NLRP3 with the ACE2-Spike protein complex at the molecular level by employing molecular dynamics simulation techniques. The therapeutic efficacy of Chyawanprash nutraceuticals is evaluated as their inhibitory potential towards APOE4-ACE2-Spike protein and NLRP3-ACE2-Spike protein complexes. Notably, our simulations unequivocally demonstrate the robust and enduring binding capability of the compound Phyllantidine with the target complexes throughout the simulation period. The findings of the studies further corroborate the primary hypothesis of APOE4 and NLRP3 as driver factors in the pathogenesis of both SARS-CoV and AD. Therefore, this research establishes a paradigm for comprehending the complex interaction between AD and SARS-CoV and lays the groundwork for further study in this domain.Communicated by Ramaswamy H. Sarma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对阿尔茨海默氏症和 SARS-CoV 神经变性过程中 APOE4、NLRP3 和 ACE2-SPIKE 复合物之间相互作用的分子内建模:对了解发病机制和制定治疗策略的意义。
神经退行性病变,包括阿尔茨海默病(AD)和高毒力的严重急性呼吸综合征冠状病毒(SARS-CoV)之间的多方面相互作用与各种疾病有关。AD和SARS-CoV的发病机制涉及APOE4等位基因、NLRP3炎性体和ACE2-SPIKE复合物。APOE4是APOE基因的一种遗传多态性,与阿尔茨海默病的易感性增加有关。NLRP3是先天免疫系统的一种炎症蛋白,在免疫反应级联反应中起着关键作用。在SARS-CoV中,ACE2受体是进入细胞的主要门户,而APOE4与ACE2刺突蛋白复合物复杂地相互作用,增强病毒内化过程。NLRP3与ace2刺突蛋白复合物的相互作用导致炎症信号的增加。APOE4/NLRP3和ace2刺突蛋白复合物相互作用的趋同表明SARS和AD之间可能存在联系。因此,目前的研究通过利用SARS-CoV数据集集中研究两者之间的关联,探索SARS-CoV和AD发病机制的可能机制。通过分子动力学模拟技术,进一步揭示APOE4和NLRP3与ACE2-Spike蛋白复合物在分子水平上的相互作用。通过对APOE4-ACE2-Spike蛋白和NLRP3-ACE2-Spike蛋白复合物的抑制作用来评价川菜营养保健品的治疗效果。值得注意的是,我们的模拟在整个模拟期间明确地证明了化合物Phyllantidine与目标复合物的强大和持久的结合能力。这些研究结果进一步证实了APOE4和NLRP3是SARS-CoV和AD发病机制的驱动因子的初步假设。因此,本研究为理解AD与SARS-CoV之间复杂的相互作用建立了一个范例,为该领域的进一步研究奠定了基础。由Ramaswamy H. Sarma传达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing. Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design. Computational insights into pediatric adenovirus inhibitors: in silico strategies for drug repurposing. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1