Evangelos G Balafas, Paraskevi I Papakyriakopoulou, Nikolaos G Kostomitsopoulos, Georgia N Valsami
{"title":"Intranasal Administration of a Polymeric Biodegradable Film to C57BL/6 Mice.","authors":"Evangelos G Balafas, Paraskevi I Papakyriakopoulou, Nikolaos G Kostomitsopoulos, Georgia N Valsami","doi":"10.30802/AALAS-JAALAS-22-000091","DOIUrl":null,"url":null,"abstract":"<p><p>Nasal drug delivery in rodents is a challenging procedure, especially for brain targeting, as the position of the material in the nasal cavity determines the success of the administration method. The objective of this study was to assess a novel intranasal administration technique for nose-to-brain delivery of biodegradable nasal films. The method was performed in C57BL/6 (<i>n</i> = 10; age, 8 wk) under inhaled sevoflurane. Twenty-four gauge catheters were used for the procedure. Hydroxypropyl methyl-cellulosebased film was formed in the lumen of the catheter and then delivered into the mouse nostril by pushing it out of the lumen using a trimmed and polished needle. Methylene blue was incorporated in the film-forming gel to indicate the delivery area in which the films were deposited. After administration, all mice recovered from anesthesia without incident. None of the mice showed any signs of injury, discomfort, or nose bleeding, thus allowing us to characterize the administration method as noninvasive. Furthermore, postmortem evaluation revealed olfactory-centered placement of the polymeric films, confirming the accuracy and repeatability of the method. In conclusion, this study documented the use of, a novel, noninvasive, intranasal administration technique for nose-to-brain drug delivery in biodegradable films for use in mice.</p>","PeriodicalId":50019,"journal":{"name":"Journal of the American Association for Laboratory Animal Science","volume":"62 2","pages":"179-184"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078934/pdf/jaalas2023000179.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Association for Laboratory Animal Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-JAALAS-22-000091","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nasal drug delivery in rodents is a challenging procedure, especially for brain targeting, as the position of the material in the nasal cavity determines the success of the administration method. The objective of this study was to assess a novel intranasal administration technique for nose-to-brain delivery of biodegradable nasal films. The method was performed in C57BL/6 (n = 10; age, 8 wk) under inhaled sevoflurane. Twenty-four gauge catheters were used for the procedure. Hydroxypropyl methyl-cellulosebased film was formed in the lumen of the catheter and then delivered into the mouse nostril by pushing it out of the lumen using a trimmed and polished needle. Methylene blue was incorporated in the film-forming gel to indicate the delivery area in which the films were deposited. After administration, all mice recovered from anesthesia without incident. None of the mice showed any signs of injury, discomfort, or nose bleeding, thus allowing us to characterize the administration method as noninvasive. Furthermore, postmortem evaluation revealed olfactory-centered placement of the polymeric films, confirming the accuracy and repeatability of the method. In conclusion, this study documented the use of, a novel, noninvasive, intranasal administration technique for nose-to-brain drug delivery in biodegradable films for use in mice.
期刊介绍:
The Journal of the American Association for Laboratory Animal Science (JAALAS) serves as an official communication vehicle for the American Association for Laboratory Animal Science (AALAS). The journal includes a section of refereed articles and a section of AALAS association news.
All signed articles, including refereed articles and book reviews, editorials, committee reports, and news and commentary, reflect the individual views of the authors and are not official views of AALAS. The mission of the refereed section of the journal is to disseminate high-quality, peer-reviewed information on animal biology, technology, facility operations, management, and compliance as relevant to the AALAS membership. JAALAS accepts research reports (data-based) or scholarly reports (literature-based), with the caveat that all articles, including solicited manuscripts, must include appropriate references and must undergo peer review.