Freja Drost Andersen, Simon Comerma Steffensen, Simon Tilma Vistisen, Estefano Pinilla, Tina Myhre Pedersen, Vladimir Matchkov, Ulf Simonsen, Charlotte Uggerhøj Andersen
{"title":"Combined effects of methadone and quetiapine on respiratory rate, haemodynamic variables, and temperature in conscious rats","authors":"Freja Drost Andersen, Simon Comerma Steffensen, Simon Tilma Vistisen, Estefano Pinilla, Tina Myhre Pedersen, Vladimir Matchkov, Ulf Simonsen, Charlotte Uggerhøj Andersen","doi":"10.1111/adb.13320","DOIUrl":null,"url":null,"abstract":"<p>Fatal poisonings where both methadone and quetiapine are detected post-mortem occurs frequently in legal autopsy cases. It is unclear whether quetiapine increases the risk of fatal methadone poisoning or if it is merely detected due to widespread use. We hypothesized that methadone and quetiapine would have additive toxic effects on respiratory rate, blood pressure, and the QTc-interval. To investigate this hypothesis, we used telemetry implants for measurements of respiratory rate, haemodynamic variables, the velocity of blood pressure changes, temperature, and movement in conscious, freely moving male Wistar rats aged 12–13 weeks. The combined effects of three accumulative i.p. doses of methadone (2.5, 10, 15 mg/kg) and quetiapine (3, 10, 30 mg/kg) were compared to rats treated with the same doses of each drug alone, and a vehicle-treated group in a randomized investigator blinded study. No additive effects of quetiapine and methadone on respiratory rate, haemodynamic variables, or movement were observed. However, body temperature was significantly lower by approximately 1.5°C on average in the group treated with both methadone and quetiapine (15 + 30 mg/kg) compared to the other groups. This indicates a synergistic effect of quetiapine and methadone on thermoregulation, which may increase the risk of fatal poisoning. We suggest studying this finding further in human settings.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"28 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.13320","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.13320","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Fatal poisonings where both methadone and quetiapine are detected post-mortem occurs frequently in legal autopsy cases. It is unclear whether quetiapine increases the risk of fatal methadone poisoning or if it is merely detected due to widespread use. We hypothesized that methadone and quetiapine would have additive toxic effects on respiratory rate, blood pressure, and the QTc-interval. To investigate this hypothesis, we used telemetry implants for measurements of respiratory rate, haemodynamic variables, the velocity of blood pressure changes, temperature, and movement in conscious, freely moving male Wistar rats aged 12–13 weeks. The combined effects of three accumulative i.p. doses of methadone (2.5, 10, 15 mg/kg) and quetiapine (3, 10, 30 mg/kg) were compared to rats treated with the same doses of each drug alone, and a vehicle-treated group in a randomized investigator blinded study. No additive effects of quetiapine and methadone on respiratory rate, haemodynamic variables, or movement were observed. However, body temperature was significantly lower by approximately 1.5°C on average in the group treated with both methadone and quetiapine (15 + 30 mg/kg) compared to the other groups. This indicates a synergistic effect of quetiapine and methadone on thermoregulation, which may increase the risk of fatal poisoning. We suggest studying this finding further in human settings.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.