Charles L Fisk, Jeffrey R Harring, Zuchao Shen, Walter Leite, King Yiu Suen, Katerina M Marcoulides
{"title":"Using Simulated Annealing to Investigate Sensitivity of SEM to External Model Misspecification.","authors":"Charles L Fisk, Jeffrey R Harring, Zuchao Shen, Walter Leite, King Yiu Suen, Katerina M Marcoulides","doi":"10.1177/00131644211073121","DOIUrl":null,"url":null,"abstract":"<p><p>Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"83 1","pages":"73-92"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211073121","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sensitivity analyses encompass a broad set of post-analytic techniques that are characterized as measuring the potential impact of any factor that has an effect on some output variables of a model. This research focuses on the utility of the simulated annealing algorithm to automatically identify path configurations and parameter values of omitted confounders in structural equation modeling (SEM). An empirical example based on a past published study is used to illustrate how strongly related an omitted variable must be to model variables for the conclusions of an analysis to change. The algorithm is outlined in detail and the results stemming from the sensitivity analysis are discussed.
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.