Prashanth S Javali, Mouliganesh Sekar, Ashish Kumar, Kavitha Thirumurugan
{"title":"Dynamics of redox signaling in aging via autophagy, inflammation, and senescence.","authors":"Prashanth S Javali, Mouliganesh Sekar, Ashish Kumar, Kavitha Thirumurugan","doi":"10.1007/s10522-023-10040-3","DOIUrl":null,"url":null,"abstract":"<p><p>Review paper attempts to explain the dynamic aspects of redox signaling in aging through autophagy, inflammation, and senescence. It begins with ROS source in the cell, then states redox signaling in autophagy, and regulation of autophagy in aging. Next, we discuss inflammation and redox signaling with various pathways involved: NOX pathway, ROS production via TNF-α, IL-1β, xanthine oxidase pathway, COX pathway, and myeloperoxidase pathway. Also, we emphasize oxidative damage as an aging marker and the contribution of pathophysiological factors to aging. In senescence-associated secretory phenotypes, we link ROS with senescence, aging disorders. Relevant crosstalk between autophagy, inflammation, and senescence using a balanced ROS level might reduce age-related disorders. Transducing the context-dependent signal communication among these three processes at high spatiotemporal resolution demands other tools like multi-omics aging biomarkers, artificial intelligence, machine learning, and deep learning. The bewildering advancement of technology in the above areas might progress age-related disorders diagnostics with precision and accuracy.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"24 5","pages":"663-678"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10040-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Review paper attempts to explain the dynamic aspects of redox signaling in aging through autophagy, inflammation, and senescence. It begins with ROS source in the cell, then states redox signaling in autophagy, and regulation of autophagy in aging. Next, we discuss inflammation and redox signaling with various pathways involved: NOX pathway, ROS production via TNF-α, IL-1β, xanthine oxidase pathway, COX pathway, and myeloperoxidase pathway. Also, we emphasize oxidative damage as an aging marker and the contribution of pathophysiological factors to aging. In senescence-associated secretory phenotypes, we link ROS with senescence, aging disorders. Relevant crosstalk between autophagy, inflammation, and senescence using a balanced ROS level might reduce age-related disorders. Transducing the context-dependent signal communication among these three processes at high spatiotemporal resolution demands other tools like multi-omics aging biomarkers, artificial intelligence, machine learning, and deep learning. The bewildering advancement of technology in the above areas might progress age-related disorders diagnostics with precision and accuracy.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.