Changes in free energy barrier for water permeation by stretch-induced phase transitions in phospholipid/cholesterol bilayers.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-10-01 Epub Date: 2023-09-01 DOI:10.1080/07391102.2023.2250447
Taiki Shigematsu, Kenichiro Koshiyama
{"title":"Changes in free energy barrier for water permeation by stretch-induced phase transitions in phospholipid/cholesterol bilayers.","authors":"Taiki Shigematsu, Kenichiro Koshiyama","doi":"10.1080/07391102.2023.2250447","DOIUrl":null,"url":null,"abstract":"<p><p>Water permeation through phospholipid/cholesterol bilayers is the key to understanding tension-induced rupture of biological cell membranes. We performed molecular dynamics simulations of stretched phospholipid/cholesterol bilayers to investigate changes in the free energy profile of water molecules across the bilayer and the lipid structure responsible for water permeation. We modeled stretching of the bilayer by applying areal strain. In stretched phospholipid/cholesterol bilayers, the hydrophobic tail of the phospholipids became disordered and the free energy barrier to water permeation decreased. Upon exceeding the critical areal strain, a phase transition to an interdigitated gel phase occurred before rupture, and the hydrophobic tail ordering as well as the free energy barrier were restored. In pure phospholipid bilayers, we did not observe such recoveries. These transient recoveries in the phospholipid/cholesterol bilayer suppressed water permeation and membrane rupture, followed by an increase in the critical areal strain at which the bilayer ruptured. This result agrees with experimental results and provides a reasonable molecular mechanism for the toughness of phospholipid/cholesterol bilayers under tension.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2250447","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Water permeation through phospholipid/cholesterol bilayers is the key to understanding tension-induced rupture of biological cell membranes. We performed molecular dynamics simulations of stretched phospholipid/cholesterol bilayers to investigate changes in the free energy profile of water molecules across the bilayer and the lipid structure responsible for water permeation. We modeled stretching of the bilayer by applying areal strain. In stretched phospholipid/cholesterol bilayers, the hydrophobic tail of the phospholipids became disordered and the free energy barrier to water permeation decreased. Upon exceeding the critical areal strain, a phase transition to an interdigitated gel phase occurred before rupture, and the hydrophobic tail ordering as well as the free energy barrier were restored. In pure phospholipid bilayers, we did not observe such recoveries. These transient recoveries in the phospholipid/cholesterol bilayer suppressed water permeation and membrane rupture, followed by an increase in the critical areal strain at which the bilayer ruptured. This result agrees with experimental results and provides a reasonable molecular mechanism for the toughness of phospholipid/cholesterol bilayers under tension.Communicated by Ramaswamy H. Sarma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂/胆固醇双分子层中由拉伸诱导的相变引起的水渗透自由能障的变化。
水在磷脂/胆固醇双分子层中的渗透是理解张力诱导生物细胞膜破裂的关键。我们对拉伸的磷脂/胆固醇双分子层进行了分子动力学模拟,以研究水分子穿过双分子层的自由能分布变化以及造成水渗透的脂质结构。我们通过施加等应变来模拟双分子层的拉伸。在拉伸的磷脂/胆固醇双分子层中,磷脂的疏水尾部变得无序,水渗透的自由能障碍降低。当超过临界应变时,相变在破裂前转变为相互交错的凝胶相,疏水尾有序化和自由能障得以恢复。在纯磷脂双层膜中,我们没有观察到这种恢复现象。磷脂/胆固醇双分子层中的这些瞬时恢复抑制了水的渗透和膜的破裂,随后双分子层破裂的临界应变增加。这一结果与实验结果一致,为磷脂/胆固醇双分子层在张力作用下的韧性提供了合理的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. Broadening the scope of WEE1 inhibitors: identifying novel drug candidates via computational approaches and drug repurposing. Molecularly imprinted polymer-based sensors for identification volatile compounds in pharmaceutical products: in silico rational design. Computational insights into pediatric adenovirus inhibitors: in silico strategies for drug repurposing. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1