Estimation of a Machine Learning-Based Decision Rule to Reduce Hypoglycemia Among Older Adults With Type 1 Diabetes: A Post Hoc Analysis of Continuous Glucose Monitoring in the WISDM Study.
Anna R Kahkoska, Kushal S Shah, Michael R Kosorok, Kellee M Miller, Michael Rickels, Ruth S Weinstock, Laura A Young, Richard E Pratley
{"title":"Estimation of a Machine Learning-Based Decision Rule to Reduce Hypoglycemia Among Older Adults With Type 1 Diabetes: A Post Hoc Analysis of Continuous Glucose Monitoring in the WISDM Study.","authors":"Anna R Kahkoska, Kushal S Shah, Michael R Kosorok, Kellee M Miller, Michael Rickels, Ruth S Weinstock, Laura A Young, Richard E Pratley","doi":"10.1177/19322968221149040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) study demonstrated continuous glucose monitoring (CGM) reduced hypoglycemia over 6 months among older adults with type 1 diabetes (T1D) compared with blood glucose monitoring (BGM). We explored heterogeneous treatment effects of CGM on hypoglycemia by formulating a data-driven decision rule that selects an intervention (ie, CGM vs BGM) to minimize percentage of time <70 mg/dL for each individual WISDM participant.</p><p><strong>Method: </strong>The precision medicine analyses used data from participants with complete data (n = 194 older adults, including those who received CGM [n = 100] and BGM [n = 94] in the trial). Policy tree and decision list algorithms were fit with 14 baseline demographic, clinical, and laboratory measures. The primary outcome was CGM-measured percentage of time spent in hypoglycemic range (<70 mg/dL), and the decision rule assigned participants to a subgroup reflecting the treatment estimated to minimize this outcome across all follow-up visits.</p><p><strong>Results: </strong>The optimal decision rule was found to be a decision list with 3 steps. The first step moved WISDM participants with baseline time-below range >1.35% and no detectable C-peptide levels to the CGM subgroup (n = 139), and the second step moved WISDM participants with a baseline time-below range of >6.45% to the CGM subgroup (n = 18). The remaining participants (n = 37) were left in the BGM subgroup. Compared with the BGM subgroup (n = 37; 19%), the group for whom CGM minimized hypoglycemia (n = 157; 81%) had more baseline hypoglycemia, a lower proportion of detectable C-peptide, higher glycemic variability, longer disease duration, and higher proportion of insulin pump use.</p><p><strong>Conclusions: </strong>The decision rule underscores the benefits of CGM for older adults to reduce hypoglycemia. Diagnostic CGM and laboratory markers may inform decision-making surrounding therapeutic CGM and identify older adults for whom CGM may be a critical intervention to reduce hypoglycemia.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"1079-1086"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968221149040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) study demonstrated continuous glucose monitoring (CGM) reduced hypoglycemia over 6 months among older adults with type 1 diabetes (T1D) compared with blood glucose monitoring (BGM). We explored heterogeneous treatment effects of CGM on hypoglycemia by formulating a data-driven decision rule that selects an intervention (ie, CGM vs BGM) to minimize percentage of time <70 mg/dL for each individual WISDM participant.
Method: The precision medicine analyses used data from participants with complete data (n = 194 older adults, including those who received CGM [n = 100] and BGM [n = 94] in the trial). Policy tree and decision list algorithms were fit with 14 baseline demographic, clinical, and laboratory measures. The primary outcome was CGM-measured percentage of time spent in hypoglycemic range (<70 mg/dL), and the decision rule assigned participants to a subgroup reflecting the treatment estimated to minimize this outcome across all follow-up visits.
Results: The optimal decision rule was found to be a decision list with 3 steps. The first step moved WISDM participants with baseline time-below range >1.35% and no detectable C-peptide levels to the CGM subgroup (n = 139), and the second step moved WISDM participants with a baseline time-below range of >6.45% to the CGM subgroup (n = 18). The remaining participants (n = 37) were left in the BGM subgroup. Compared with the BGM subgroup (n = 37; 19%), the group for whom CGM minimized hypoglycemia (n = 157; 81%) had more baseline hypoglycemia, a lower proportion of detectable C-peptide, higher glycemic variability, longer disease duration, and higher proportion of insulin pump use.
Conclusions: The decision rule underscores the benefits of CGM for older adults to reduce hypoglycemia. Diagnostic CGM and laboratory markers may inform decision-making surrounding therapeutic CGM and identify older adults for whom CGM may be a critical intervention to reduce hypoglycemia.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.