Measurement of gluconeogenesis by 2H2O labeling and mass isotopomer distribution analysis.

The Journal of Biological Chemistry Pub Date : 2023-10-01 Epub Date: 2023-09-01 DOI:10.1016/j.jbc.2023.105206
Naveed Ziari, Marc Hellerstein
{"title":"Measurement of gluconeogenesis by <sup>2</sup>H<sub>2</sub>O labeling and mass isotopomer distribution analysis.","authors":"Naveed Ziari,&nbsp;Marc Hellerstein","doi":"10.1016/j.jbc.2023.105206","DOIUrl":null,"url":null,"abstract":"<p><p>The gluconeogenesis pathway, which converts nonsugar molecules into glucose, is critical for maintaining glucose homeostasis. Techniques that measure flux through this pathway are invaluable for studying metabolic diseases such as diabetes that are associated with dysregulation of this pathway. We introduce a new method that measures fractional gluconeogenesis by heavy water labeling and gas chromatographic-mass spectrometric analysis. This technique circumvents cumbersome benchwork or inference of positionality from mass spectra. The enrichment and pattern of deuterium label on glucose is quantified by use of mass isotopomer distribution analysis, which informs on how much of glucose-6-phosphate-derived glucose comes from the gluconeogenesis (GNG) pathway. We use an in vivo model of the GNG pathway that is based on previously published models but offers a new approach to calculating GNG pathway and subpathway contributions using combinatorial probabilities. We demonstrated that this method accurately quantifies fractional GNG through experiments that perturb flux through the pathway and by probing analytical sensitivity. While this method was developed in mice, the results suggest that it is translatable to humans in a clinical setting.</p>","PeriodicalId":22621,"journal":{"name":"The Journal of Biological Chemistry","volume":" ","pages":"105206"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biological Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbc.2023.105206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gluconeogenesis pathway, which converts nonsugar molecules into glucose, is critical for maintaining glucose homeostasis. Techniques that measure flux through this pathway are invaluable for studying metabolic diseases such as diabetes that are associated with dysregulation of this pathway. We introduce a new method that measures fractional gluconeogenesis by heavy water labeling and gas chromatographic-mass spectrometric analysis. This technique circumvents cumbersome benchwork or inference of positionality from mass spectra. The enrichment and pattern of deuterium label on glucose is quantified by use of mass isotopomer distribution analysis, which informs on how much of glucose-6-phosphate-derived glucose comes from the gluconeogenesis (GNG) pathway. We use an in vivo model of the GNG pathway that is based on previously published models but offers a new approach to calculating GNG pathway and subpathway contributions using combinatorial probabilities. We demonstrated that this method accurately quantifies fractional GNG through experiments that perturb flux through the pathway and by probing analytical sensitivity. While this method was developed in mice, the results suggest that it is translatable to humans in a clinical setting.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过2H2O标记和质量等位异构体分布分析测量糖异生。
糖异生途径将非糖分子转化为葡萄糖,对维持葡萄糖稳态至关重要。测量通过该途径的流量的技术对于研究与该途径失调相关的代谢性疾病(如糖尿病)是非常宝贵的。我们介绍了一种通过重水标记和气相色谱-质谱分析来测量部分糖异生的新方法。这项技术避免了繁琐的基准工作或从质谱推断位置。氘标记在葡萄糖上的富集和模式通过使用质量等位异构体分布分析进行量化,该分析可确定葡萄糖-6-磷酸衍生的葡萄糖有多少来自糖异生(GNG)途径。我们使用了一个GNG通路的体内模型,该模型基于先前发表的模型,但提供了一种使用组合概率计算GNG通路和亚通路贡献的新方法。我们通过干扰通路流量的实验和探测分析灵敏度,证明了这种方法准确地量化了分数GNG。虽然这种方法是在小鼠身上开发的,但研究结果表明,在临床环境中,它可以翻译给人类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The molecular principles underlying diverse functions of the SLC26 family of proteins. JNK activity modulates postsynaptic scaffold protein SAP102 and kainate receptor dynamics in dendritic spines. Structural characterization of methylation-independent PP2A assembly guides Alphafold2Multimer prediction of family-wide PP2A complexes. Applications of protein ubiquitylation and deubiquitylation in drug discovery. Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1