Junxiu Jin, Dong Ho Kang, Jin Jeon, Hyung Gon Lee, Woong Mo Kim, Myung Ha Yoon, Jeong Il Choi
{"title":"Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation.","authors":"Junxiu Jin, Dong Ho Kang, Jin Jeon, Hyung Gon Lee, Woong Mo Kim, Myung Ha Yoon, Jeong Il Choi","doi":"10.3344/kjp.22297","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation.</p><p><strong>Methods: </strong>Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord.</p><p><strong>Results: </strong>Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals.</p><p><strong>Conclusions: </strong>Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.</p>","PeriodicalId":56252,"journal":{"name":"Korean Journal of Pain","volume":"36 1","pages":"51-59"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/be/c4/kjp-36-1-51.PMC9812699.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3344/kjp.22297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation.
Methods: Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord.
Results: Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals.
Conclusions: Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.
期刊介绍:
Korean Journal of Pain (Korean J Pain, KJP) is the official journal of the Korean Pain Society, founded in 1986. It has been published since 1988. It publishes peer reviewed original articles related to all aspects of pain, including clinical and basic research, patient care, education, and health policy. It has been published quarterly in English since 2009 (on the first day of January, April, July, and October). In addition, it has also become the official journal of the International Spinal Pain Society since 2016. The mission of the Journal is to improve the care of patients in pain by providing a forum for clinical researchers, basic scientists, clinicians, and other health professionals. The circulation number per issue is 50.