HM-chromanone isolated from Portulaca oleracea L. alleviates insulin resistance and inhibits gluconeogenesis by regulating palmitate-induced activation of ROS/JNK in HepG2 cells.
{"title":"HM-chromanone isolated from <i>Portulaca oleracea</i> L. alleviates insulin resistance and inhibits gluconeogenesis by regulating palmitate-induced activation of ROS/JNK in HepG2 cells.","authors":"Jae Eun Park, Ji Sook Han","doi":"10.1093/toxres/tfad055","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress is a major cause of hepatic insulin resistance. This study investigated whether <i>(E</i>)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone), a homoisoflavonoid compound isolated from <i>Portulaca oleracea</i> L., alleviates insulin resistance and inhibits gluconeogenesis by reducing palmitate (PA)-induced reactive oxygen species (ROS)/c-Jun NH2-terminal kinase (JNK) activation in HepG2 cells. PA treatment (0.5 mM) for 16 h resulted in the highest production of ROS and induced insulin resistance in HepG2 cells. HM-chromanone, like N-acetyl-1-cysteine, significantly decreased PA-induced ROS production in the cells. HM-chromanone also significantly inhibited PA-induced JNK activation, showing a significant reduction in tumor necrosis factor and interleukin expression levels. Thus, HM-chromanone decreased the phosphorylation of Ser307 in insulin receptor substrate 1, while increasing phosphorylation of serine-threonine kinase (AKT), thereby restoring the insulin signaling pathway impaired by PA. HM-chromanone also significantly increased the phosphorylation of forkhead box protein O, thereby inhibiting the expression of gluconeogenic enzymes and reducing glucose production in PA-treated HepG2 cells. HM-chromanone also increased glycogen synthesis by phosphorylating glycogen synthase kinase-3β. Therefore, HM-chromanone may alleviate insulin resistance and inhibit gluconeogenesis by regulating PA-induced ROS/JNK activation in HepG2 cells.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"12 4","pages":"648-657"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfad055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress is a major cause of hepatic insulin resistance. This study investigated whether (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone), a homoisoflavonoid compound isolated from Portulaca oleracea L., alleviates insulin resistance and inhibits gluconeogenesis by reducing palmitate (PA)-induced reactive oxygen species (ROS)/c-Jun NH2-terminal kinase (JNK) activation in HepG2 cells. PA treatment (0.5 mM) for 16 h resulted in the highest production of ROS and induced insulin resistance in HepG2 cells. HM-chromanone, like N-acetyl-1-cysteine, significantly decreased PA-induced ROS production in the cells. HM-chromanone also significantly inhibited PA-induced JNK activation, showing a significant reduction in tumor necrosis factor and interleukin expression levels. Thus, HM-chromanone decreased the phosphorylation of Ser307 in insulin receptor substrate 1, while increasing phosphorylation of serine-threonine kinase (AKT), thereby restoring the insulin signaling pathway impaired by PA. HM-chromanone also significantly increased the phosphorylation of forkhead box protein O, thereby inhibiting the expression of gluconeogenic enzymes and reducing glucose production in PA-treated HepG2 cells. HM-chromanone also increased glycogen synthesis by phosphorylating glycogen synthase kinase-3β. Therefore, HM-chromanone may alleviate insulin resistance and inhibit gluconeogenesis by regulating PA-induced ROS/JNK activation in HepG2 cells.