Unexplored Cdc42 functions at the budding yeast nucleus suggested by subcellular localization.

Q2 Biochemistry, Genetics and Molecular Biology Small GTPases Pub Date : 2022-01-01 DOI:10.1080/21541248.2021.1993714
Michelle S Lu, David G Drubin
{"title":"Unexplored Cdc42 functions at the budding yeast nucleus suggested by subcellular localization.","authors":"Michelle S Lu,&nbsp;David G Drubin","doi":"10.1080/21541248.2021.1993714","DOIUrl":null,"url":null,"abstract":"<p><p>In budding yeast, the Rho-family GTPase Cdc42 has several functions that depend on its subcellular localization and the cell cycle stage. During bud formation, Cdc42 localizes to the plasma membrane at the bud tip and bud neck where it carries out functions in actin polymerization, spindle positioning, and exocytosis to ensure proper polarity development. Recent live-cell imaging analysis revealed a novel localization of Cdc42 to a discrete intracellular focus associated with the vacuole and nuclear envelope. The discovery of this novel Cdc42 localization led to the identification of a new function in ESCRT-mediated nuclear envelope sealing. However, other aspects of this intracellular localization and its functional implications were not explored. Here, we further characterize the Cdc42 focus and present several novel observations that suggest possible additional Cdc42 functions at the nucleus, including nucleus-vacuole junction formation, nuclear envelope tethering, nuclear migration, and nucleopodia formation.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"13 1","pages":"255-266"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707532/pdf/KSGT_13_1993714.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2021.1993714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

In budding yeast, the Rho-family GTPase Cdc42 has several functions that depend on its subcellular localization and the cell cycle stage. During bud formation, Cdc42 localizes to the plasma membrane at the bud tip and bud neck where it carries out functions in actin polymerization, spindle positioning, and exocytosis to ensure proper polarity development. Recent live-cell imaging analysis revealed a novel localization of Cdc42 to a discrete intracellular focus associated with the vacuole and nuclear envelope. The discovery of this novel Cdc42 localization led to the identification of a new function in ESCRT-mediated nuclear envelope sealing. However, other aspects of this intracellular localization and its functional implications were not explored. Here, we further characterize the Cdc42 focus and present several novel observations that suggest possible additional Cdc42 functions at the nucleus, including nucleus-vacuole junction formation, nuclear envelope tethering, nuclear migration, and nucleopodia formation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未被探索的Cdc42在芽殖酵母核中的功能表明了亚细胞定位。
在出芽酵母中,rho家族GTPase Cdc42具有多种功能,这些功能取决于其亚细胞定位和细胞周期阶段。在芽形成过程中,Cdc42定位于芽尖和芽颈的质膜,在那里进行肌动蛋白聚合、纺锤体定位和胞外分泌等功能,以确保适当的极性发育。最近的活细胞成像分析显示,Cdc42定位于与液泡和核膜相关的离散细胞内病灶。这种新的Cdc42定位的发现导致了在escrt介导的核包膜密封中的新功能的鉴定。然而,这种细胞内定位的其他方面及其功能意义尚未探讨。在这里,我们进一步表征了Cdc42的焦点,并提出了一些新的观察结果,表明Cdc42可能在细胞核中具有其他功能,包括核-液泡连接的形成、核膜的系结、核迁移和核足的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small GTPases
Small GTPases Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.10
自引率
0.00%
发文量
6
期刊最新文献
PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. ACKnowledging the role of the Activated-Cdc42 associated kinase (ACK) in regulating protein stability in cancer. Serine phosphorylation of the RhoGEF Trio stabilizes endothelial cell-cell junctions. Rab6-mediated retrograde trafficking from the Golgi: the trouble with tubules. To stay in shape and keep moving: MLL emerges as a new transcriptional regulator of Rho GTPases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1