An enhanced PSO algorithm to configure a responsive-resilient supply chain network considering environmental issues: a case study of the oxygen concentrator device.
Soodeh Nasrollah, S Esmaeil Najafi, Hadi Bagherzadeh, Mohsen Rostamy-Malkhalifeh
{"title":"An enhanced PSO algorithm to configure a responsive-resilient supply chain network considering environmental issues: a case study of the oxygen concentrator device.","authors":"Soodeh Nasrollah, S Esmaeil Najafi, Hadi Bagherzadeh, Mohsen Rostamy-Malkhalifeh","doi":"10.1007/s00521-022-07739-8","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the hyper-competitive marketplace has led to a drastic enhancement in the importance of the supply chain problem. Hence, the attention of managers and researchers has been attracted to one of the most crucial problems in the supply chain management area called the supply chain network design problem. In this regard, this research attempts to design an integrated forward and backward logistics network by proposing a multi-objective mathematical model. The suggested model aims at minimizing the environmental impacts and the costs while maximizing the resilience and responsiveness of the supply chain. Since uncertainty is a major issue in the supply chain problem, the present paper studies the research problem under the mixed uncertainty and utilizes the robust possibilistic stochastic method to cope with the uncertainty. On the other side, since configuring a supply chain is known as an NP-Hard problem, this research develops an enhanced particle swarm optimization algorithm to obtain optimal/near-optimal solutions in a reasonable time. Based on the achieved results, the developed algorithm can obtain high-quality solutions (i.e. solutions with zero or a very small gap from the optimal solution) in a reasonable amount of time. The achieved results demonstrate the negative impact of the enhancement of the demand on environmental damages and the total cost. Also, according to the outputs, by increasing the service level, the total cost and environmental impacts have increased by 41% and 10%, respectively. On the other hand, the results show that increasing the disrupted capacity parameters has led to a 17% increase in the total costs and a 7% increase in carbon emissions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00521-022-07739-8.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 3","pages":"2647-2678"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440659/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07739-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
In recent years, the hyper-competitive marketplace has led to a drastic enhancement in the importance of the supply chain problem. Hence, the attention of managers and researchers has been attracted to one of the most crucial problems in the supply chain management area called the supply chain network design problem. In this regard, this research attempts to design an integrated forward and backward logistics network by proposing a multi-objective mathematical model. The suggested model aims at minimizing the environmental impacts and the costs while maximizing the resilience and responsiveness of the supply chain. Since uncertainty is a major issue in the supply chain problem, the present paper studies the research problem under the mixed uncertainty and utilizes the robust possibilistic stochastic method to cope with the uncertainty. On the other side, since configuring a supply chain is known as an NP-Hard problem, this research develops an enhanced particle swarm optimization algorithm to obtain optimal/near-optimal solutions in a reasonable time. Based on the achieved results, the developed algorithm can obtain high-quality solutions (i.e. solutions with zero or a very small gap from the optimal solution) in a reasonable amount of time. The achieved results demonstrate the negative impact of the enhancement of the demand on environmental damages and the total cost. Also, according to the outputs, by increasing the service level, the total cost and environmental impacts have increased by 41% and 10%, respectively. On the other hand, the results show that increasing the disrupted capacity parameters has led to a 17% increase in the total costs and a 7% increase in carbon emissions.
Supplementary information: The online version contains supplementary material available at 10.1007/s00521-022-07739-8.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.