Alisa A Shaimardanova, Daria S Chulpanova, Valeriya V Solovyeva, Shaza S Issa, Aysilu I Mullagulova, Angelina A Titova, Yana O Mukhamedshina, Anna V Timofeeva, Alexander M Aimaletdinov, Islam R Nigmetzyanov, Albert A Rizvanov
{"title":"Increasing β-hexosaminidase A activity using genetically modified mesenchymal stem cells.","authors":"Alisa A Shaimardanova, Daria S Chulpanova, Valeriya V Solovyeva, Shaza S Issa, Aysilu I Mullagulova, Angelina A Titova, Yana O Mukhamedshina, Anna V Timofeeva, Alexander M Aimaletdinov, Islam R Nigmetzyanov, Albert A Rizvanov","doi":"10.4103/1673-5374.375328","DOIUrl":null,"url":null,"abstract":"<p><p>GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorders. These diseases result from a deficiency of lysosomal enzyme β-hexosaminidase A (HexA), which is responsible for GM2 ganglioside degradation. HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells, leading to severe progressive neurodegeneration and neuroinflammation. To date, there is no treatment for these diseases. Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses. This study aimed to evaluate the ability of genetically modified mesenchymal stem cells (MSCs-HEXA-HEXB) to restore HexA deficiency in Tay-Sachs disease patient cells, as well as to analyze the functionality and biodistribution of MSCs in vivo. The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon interaction with MSCs-HEXA-HEXB. The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme, detectable in vivo, and intravenous injection of the cells does not cause an immune response in animals. These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"19 1","pages":"212-219"},"PeriodicalIF":5.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6b/d4/NRR-19-212.PMC10479847.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/1673-5374.375328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorders. These diseases result from a deficiency of lysosomal enzyme β-hexosaminidase A (HexA), which is responsible for GM2 ganglioside degradation. HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells, leading to severe progressive neurodegeneration and neuroinflammation. To date, there is no treatment for these diseases. Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses. This study aimed to evaluate the ability of genetically modified mesenchymal stem cells (MSCs-HEXA-HEXB) to restore HexA deficiency in Tay-Sachs disease patient cells, as well as to analyze the functionality and biodistribution of MSCs in vivo. The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon interaction with MSCs-HEXA-HEXB. The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme, detectable in vivo, and intravenous injection of the cells does not cause an immune response in animals. These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.