Automated diagnosis of autism with artificial intelligence: State of the art.

IF 3.4 3区 医学 Q2 NEUROSCIENCES Reviews in the Neurosciences Pub Date : 2023-09-08 Print Date: 2024-02-26 DOI:10.1515/revneuro-2023-0050
Amir Valizadeh, Mana Moassefi, Amin Nakhostin-Ansari, Soheil Heidari Some'eh, Hossein Hosseini-Asl, Mehrnush Saghab Torbati, Reyhaneh Aghajani, Zahra Maleki Ghorbani, Iman Menbari-Oskouie, Faezeh Aghajani, Alireza Mirzamohamadi, Mohammad Ghafouri, Shahriar Faghani, Amir Hossein Memari
{"title":"Automated diagnosis of autism with artificial intelligence: State of the art.","authors":"Amir Valizadeh, Mana Moassefi, Amin Nakhostin-Ansari, Soheil Heidari Some'eh, Hossein Hosseini-Asl, Mehrnush Saghab Torbati, Reyhaneh Aghajani, Zahra Maleki Ghorbani, Iman Menbari-Oskouie, Faezeh Aghajani, Alireza Mirzamohamadi, Mohammad Ghafouri, Shahriar Faghani, Amir Hossein Memari","doi":"10.1515/revneuro-2023-0050","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) represents a panel of conditions that begin during the developmental period and result in impairments of personal, social, academic, or occupational functioning. Early diagnosis is directly related to a better prognosis. Unfortunately, the diagnosis of ASD requires a long and exhausting subjective process. We aimed to review the state of the art for automated autism diagnosis and recognition in this research. In February 2022, we searched multiple databases and sources of gray literature for eligible studies. We used an adapted version of the QUADAS-2 tool to assess the risk of bias in the studies. A brief report of the methods and results of each study is presented. Data were synthesized for each modality separately using the Split Component Synthesis (SCS) method. We assessed heterogeneity using the <i>I</i> <sup>2</sup> statistics and evaluated publication bias using trim and fill tests combined with ln DOR. Confidence in cumulative evidence was assessed using the GRADE approach for diagnostic studies. We included 344 studies from 186,020 participants (51,129 are estimated to be unique) for nine different modalities in this review, from which 232 reported sufficient data for meta-analysis. The area under the curve was in the range of 0.71-0.90 for all the modalities. The studies on EEG data provided the best accuracy, with the area under the curve ranging between 0.85 and 0.93. We found that the literature is rife with bias and methodological/reporting flaws. Recommendations are provided for future research to provide better studies and fill in the current knowledge gaps.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"141-163"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2023-0050","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) represents a panel of conditions that begin during the developmental period and result in impairments of personal, social, academic, or occupational functioning. Early diagnosis is directly related to a better prognosis. Unfortunately, the diagnosis of ASD requires a long and exhausting subjective process. We aimed to review the state of the art for automated autism diagnosis and recognition in this research. In February 2022, we searched multiple databases and sources of gray literature for eligible studies. We used an adapted version of the QUADAS-2 tool to assess the risk of bias in the studies. A brief report of the methods and results of each study is presented. Data were synthesized for each modality separately using the Split Component Synthesis (SCS) method. We assessed heterogeneity using the I 2 statistics and evaluated publication bias using trim and fill tests combined with ln DOR. Confidence in cumulative evidence was assessed using the GRADE approach for diagnostic studies. We included 344 studies from 186,020 participants (51,129 are estimated to be unique) for nine different modalities in this review, from which 232 reported sufficient data for meta-analysis. The area under the curve was in the range of 0.71-0.90 for all the modalities. The studies on EEG data provided the best accuracy, with the area under the curve ranging between 0.85 and 0.93. We found that the literature is rife with bias and methodological/reporting flaws. Recommendations are provided for future research to provide better studies and fill in the current knowledge gaps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能自动诊断自闭症:最新技术。
自闭症谱系障碍(ASD)是一种始于发育期并导致个人、社交、学习或职业功能障碍的疾病。早期诊断直接关系到更好的预后。遗憾的是,ASD 的诊断需要一个漫长而费力的主观过程。本研究旨在回顾自闭症自动诊断和识别的最新进展。2022 年 2 月,我们在多个数据库和灰色文献中搜索了符合条件的研究。我们使用改编版的 QUADAS-2 工具来评估研究的偏倚风险。本文简要报告了每项研究的方法和结果。我们采用拆分成分综合法(SCS)分别对每种方式的数据进行了综合。我们使用I 2统计量评估异质性,并使用修剪和填充检验结合ln DOR评估发表偏倚。我们采用诊断研究的 GRADE 方法评估了累积证据的可信度。我们在本综述中纳入了九种不同方式的 344 项研究,涉及 186,020 名参与者(估计有 51,129 名参与者是唯一的),其中 232 项研究报告了足够的数据用于荟萃分析。所有模式的曲线下面积均在 0.71-0.90 之间。关于脑电图数据的研究提供了最好的准确性,曲线下面积在 0.85 至 0.93 之间。我们发现,文献中充斥着偏见和方法/报告缺陷。我们为今后的研究提出了建议,以提供更好的研究并填补目前的知识空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in the Neurosciences
Reviews in the Neurosciences 医学-神经科学
CiteScore
9.40
自引率
2.40%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.
期刊最新文献
Phase-amplitude coupling during auditory steady-state stimulation: a methodological review. The essential role of cerebrospinal fluid in the brain; a comprehensive review. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Recent advances on brain drug delivery via nanoparticles: alternative future materials for neuroscience applications; a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1