Allegra N DePasquale, Alice C Poirier, Megan A Mah, Cinthia Villalobos Suarez, Adrian Guadamuz, Saul Cheves Hernandez, Ronald Lopez Navarro, Jeremy D Hogan, Jessica M Rothman, Omer Nevo, Amanda D Melin
{"title":"Picking pithy plants: Pith selectivity by wild white-faced capuchin monkeys, Cebus imitator.","authors":"Allegra N DePasquale, Alice C Poirier, Megan A Mah, Cinthia Villalobos Suarez, Adrian Guadamuz, Saul Cheves Hernandez, Ronald Lopez Navarro, Jeremy D Hogan, Jessica M Rothman, Omer Nevo, Amanda D Melin","doi":"10.1002/ajp.23549","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding diet selectivity is a longstanding goal in primate ecology. Deciphering when and why primates consume different resources can provide insights into their nutritional ecology as well as adaptations to food scarcity. Plant pith, the spongy interior of plant stems, is occasionally eaten by primates, but the context is poorly understood. We examine the ecological, mechanical, chemical, and nutritional basis of plant pith selection by a wild, frugivorous-omnivorous primate (Cebus imitator). We test the hypothesis that pith is a fallback food, that is, consumed when fruit is less abundant, and test for differences between plant species from which pith is eaten versus avoided. We collected 3.5 years of capuchin pith consumption data to document dietary species and analyzed \"pith patch visits\" in relation to fruit availability, visits to fruit patches, and climatic seasonality. We analyzed dietary and non-dietary species for relative pith quantity, mechanical hardness, odor composition, and macronutrient concentrations. Capuchins ate pith from 11 of ~300 plant species common in the dry forest, most commonly Bursera simaruba. We find that pith consumption is not directly related to fruit availability or fruit foraging but occurs most frequently (84% of patch visits) during the months of seasonal transition. Relative to common non-dietary species, dietary pith species have relatively higher pith quantity, have softer outer branches and pith, and contain more terpenoids, a class of bioactive compounds notable for their widespread medicinal properties. Our results suggest that greater pith quantity, lower hardness, and a more complex, terpenoid-rich odor profile contribute to species selectivity; further, as pith is likely to be consistently available throughout the year, the seasonality of pith foraging may point to zoopharmacognosy, as seasonal transitions typically introduce new parasites or pathogens. Our study furthers our understanding of how climatic seasonality impacts primate behavior and sheds new light on food choice by an omnivorous primate.</p>","PeriodicalId":7662,"journal":{"name":"American Journal of Primatology","volume":" ","pages":"e23549"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Primatology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajp.23549","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding diet selectivity is a longstanding goal in primate ecology. Deciphering when and why primates consume different resources can provide insights into their nutritional ecology as well as adaptations to food scarcity. Plant pith, the spongy interior of plant stems, is occasionally eaten by primates, but the context is poorly understood. We examine the ecological, mechanical, chemical, and nutritional basis of plant pith selection by a wild, frugivorous-omnivorous primate (Cebus imitator). We test the hypothesis that pith is a fallback food, that is, consumed when fruit is less abundant, and test for differences between plant species from which pith is eaten versus avoided. We collected 3.5 years of capuchin pith consumption data to document dietary species and analyzed "pith patch visits" in relation to fruit availability, visits to fruit patches, and climatic seasonality. We analyzed dietary and non-dietary species for relative pith quantity, mechanical hardness, odor composition, and macronutrient concentrations. Capuchins ate pith from 11 of ~300 plant species common in the dry forest, most commonly Bursera simaruba. We find that pith consumption is not directly related to fruit availability or fruit foraging but occurs most frequently (84% of patch visits) during the months of seasonal transition. Relative to common non-dietary species, dietary pith species have relatively higher pith quantity, have softer outer branches and pith, and contain more terpenoids, a class of bioactive compounds notable for their widespread medicinal properties. Our results suggest that greater pith quantity, lower hardness, and a more complex, terpenoid-rich odor profile contribute to species selectivity; further, as pith is likely to be consistently available throughout the year, the seasonality of pith foraging may point to zoopharmacognosy, as seasonal transitions typically introduce new parasites or pathogens. Our study furthers our understanding of how climatic seasonality impacts primate behavior and sheds new light on food choice by an omnivorous primate.
期刊介绍:
The objective of the American Journal of Primatology is to provide a forum for the exchange of ideas and findings among primatologists and to convey our increasing understanding of this order of animals to specialists and interested readers alike.
Primatology is an unusual science in that its practitioners work in a wide variety of departments and institutions, live in countries throughout the world, and carry out a vast range of research procedures. Whether we are anthropologists, psychologists, biologists, or medical researchers, whether we live in Japan, Kenya, Brazil, or the United States, whether we conduct naturalistic observations in the field or experiments in the lab, we are united in our goal of better understanding primates. Our studies of nonhuman primates are of interest to scientists in many other disciplines ranging from entomology to sociology.