Daniel Stocks , Emily Nixon , Adam Trickey , Martin Homer , Ellen Brooks-Pollock
{"title":"Limited impact of contact tracing in a University setting for COVID-19 due to asymptomatic transmission and social distancing","authors":"Daniel Stocks , Emily Nixon , Adam Trickey , Martin Homer , Ellen Brooks-Pollock","doi":"10.1016/j.epidem.2023.100716","DOIUrl":null,"url":null,"abstract":"<div><p>Contact tracing is an important tool for controlling the spread of infectious diseases, including COVID-19. Here, we investigate the spread of COVID-19 and the effectiveness of contact tracing in a university population, using a data-driven ego-centric network model constructed with social contact data collected during 2020 and similar data collected in 2010. We find that during 2020, university staff and students consistently reported fewer social contacts than in 2010, however those contacts occurred more frequently and were of longer duration. We find that contact tracing in the presence of social distancing is less impactful than without social distancing. By combining multiple data sources, we show that University-aged populations are likely to develop asymptomatic COVID-19 infections. We find that asymptomatic index cases cannot be reliably discovered through contact tracing and consequently transmission in their social network is not significantly reduced through contact tracing. In summary, social distancing restrictions had a large impact on limiting COVID-19 outbreaks in universities; to reduce transmission further contact tracing should be used in conjunction with alternative interventions.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"45 ","pages":"Article 100716"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175543652300052X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Contact tracing is an important tool for controlling the spread of infectious diseases, including COVID-19. Here, we investigate the spread of COVID-19 and the effectiveness of contact tracing in a university population, using a data-driven ego-centric network model constructed with social contact data collected during 2020 and similar data collected in 2010. We find that during 2020, university staff and students consistently reported fewer social contacts than in 2010, however those contacts occurred more frequently and were of longer duration. We find that contact tracing in the presence of social distancing is less impactful than without social distancing. By combining multiple data sources, we show that University-aged populations are likely to develop asymptomatic COVID-19 infections. We find that asymptomatic index cases cannot be reliably discovered through contact tracing and consequently transmission in their social network is not significantly reduced through contact tracing. In summary, social distancing restrictions had a large impact on limiting COVID-19 outbreaks in universities; to reduce transmission further contact tracing should be used in conjunction with alternative interventions.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.