David Satzer, Shasha Wu, Julia Henry, Emily Doll, Naoum P Issa, Peter C Warnke
{"title":"Ambulatory Local Field Potential Recordings from the Thalamus in Epilepsy: A Feasibility Study.","authors":"David Satzer, Shasha Wu, Julia Henry, Emily Doll, Naoum P Issa, Peter C Warnke","doi":"10.1159/000529961","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Stimulation of the thalamus is gaining favor in the treatment of medically refractory multifocal and generalized epilepsy. Implanted brain stimulators capable of recording ambulatory local field potentials (LFPs) have recently been introduced, but there is little information to guide their use in thalamic stimulation for epilepsy. This study sought to assess the feasibility of chronically recording ambulatory interictal LFP from the thalamus in patients with epilepsy.</p><p><strong>Methods: </strong>In this pilot study, ambulatory LFP was recorded from patients who underwent sensing-enabled deep brain stimulation (DBS, 2 participants) or responsive neurostimulation (RNS, 3 participants) targeting the anterior nucleus of the thalamus (ANT, 2 electrodes), centromedian nucleus (CM, 7 electrodes), or medial pulvinar (PuM, 1 electrode) for multifocal or generalized epilepsy. Time-domain and frequency-domain LFP was investigated for epileptiform discharges, spectral peaks, circadian variation, and peri-ictal patterns.</p><p><strong>Results: </strong>Thalamic interictal discharges were visible on ambulatory recordings from both DBS and RNS. At-home interictal frequency-domain data could be extracted from both devices. Spectral peaks were noted at 10-15 Hz in CM, 6-11 Hz in ANT, and 19-24 Hz in PuM but varied in prominence and were not visible in all electrodes. In CM, 10-15 Hz power exhibited circadian variation and was attenuated by eye opening.</p><p><strong>Conclusion: </strong>Chronic ambulatory recording of thalamic LFP is feasible. Common spectral peaks can be observed but vary between electrodes and across neural states. DBS and RNS devices provide a wealth of complementary data that have the potential to better inform thalamic stimulation for epilepsy.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":"101 3","pages":"195-206"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529961","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Stimulation of the thalamus is gaining favor in the treatment of medically refractory multifocal and generalized epilepsy. Implanted brain stimulators capable of recording ambulatory local field potentials (LFPs) have recently been introduced, but there is little information to guide their use in thalamic stimulation for epilepsy. This study sought to assess the feasibility of chronically recording ambulatory interictal LFP from the thalamus in patients with epilepsy.
Methods: In this pilot study, ambulatory LFP was recorded from patients who underwent sensing-enabled deep brain stimulation (DBS, 2 participants) or responsive neurostimulation (RNS, 3 participants) targeting the anterior nucleus of the thalamus (ANT, 2 electrodes), centromedian nucleus (CM, 7 electrodes), or medial pulvinar (PuM, 1 electrode) for multifocal or generalized epilepsy. Time-domain and frequency-domain LFP was investigated for epileptiform discharges, spectral peaks, circadian variation, and peri-ictal patterns.
Results: Thalamic interictal discharges were visible on ambulatory recordings from both DBS and RNS. At-home interictal frequency-domain data could be extracted from both devices. Spectral peaks were noted at 10-15 Hz in CM, 6-11 Hz in ANT, and 19-24 Hz in PuM but varied in prominence and were not visible in all electrodes. In CM, 10-15 Hz power exhibited circadian variation and was attenuated by eye opening.
Conclusion: Chronic ambulatory recording of thalamic LFP is feasible. Common spectral peaks can be observed but vary between electrodes and across neural states. DBS and RNS devices provide a wealth of complementary data that have the potential to better inform thalamic stimulation for epilepsy.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.