Framework Nucleic Acids: A Promising Vehicle for Small Molecular Cargos.

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2023-01-01 DOI:10.2174/1389200224666230120124402
Junjiang Zhang, Jiayin Li, Lei Sui, Yanjing Li
{"title":"Framework Nucleic Acids: A Promising Vehicle for Small Molecular Cargos.","authors":"Junjiang Zhang,&nbsp;Jiayin Li,&nbsp;Lei Sui,&nbsp;Yanjing Li","doi":"10.2174/1389200224666230120124402","DOIUrl":null,"url":null,"abstract":"<p><p>Framework nucleic acids (FNAs), which are a series of self-assembled DNA nanostructures, are highly versatile tools for engineering intelligent molecular delivery vehicles. Owing to their precise and controllable design and construction, excellent programmability and functionality, as well as favorable intercalation between DNA and small molecules, FNAs provide a promising approach for small molecule delivery. This review discusses the advantages, applications, and current challenges of FNAs for the delivery of small molecular cargo. First, the physicochemical and biological properties that make FNAs favorable for the transport of small molecules are introduced. Thereafter, the classification of loaded cargos and the mechanism of combination between small molecules and FNAs are summarized in detail, and recent research on FNA-based delivery systems and their applications are highlighted. Finally, the challenges and prospects of FNA nanocarriers are discussed to advance their exploitation and clinical adoption.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230120124402","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Framework nucleic acids (FNAs), which are a series of self-assembled DNA nanostructures, are highly versatile tools for engineering intelligent molecular delivery vehicles. Owing to their precise and controllable design and construction, excellent programmability and functionality, as well as favorable intercalation between DNA and small molecules, FNAs provide a promising approach for small molecule delivery. This review discusses the advantages, applications, and current challenges of FNAs for the delivery of small molecular cargo. First, the physicochemical and biological properties that make FNAs favorable for the transport of small molecules are introduced. Thereafter, the classification of loaded cargos and the mechanism of combination between small molecules and FNAs are summarized in detail, and recent research on FNA-based delivery systems and their applications are highlighted. Finally, the challenges and prospects of FNA nanocarriers are discussed to advance their exploitation and clinical adoption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
框架核酸:一种有前途的小分子货物载体。
框架核酸(FNAs)是一系列自组装的DNA纳米结构,是工程智能分子递送载体的通用工具。由于其精确可控的设计和构建、优异的可编程性和功能性,以及DNA和小分子之间的良好嵌入,FNAs为小分子递送提供了一种很有前途的方法。这篇综述讨论了FNAs在小分子货物运输方面的优势、应用和当前的挑战。首先,介绍了FNAs有利于小分子传输的物理化学和生物学特性。随后,详细总结了装载货物的分类以及小分子与FNA的结合机制,并重点介绍了基于FNA的递送系统及其应用的最新研究。最后,讨论了FNA纳米载体的挑战和前景,以促进其开发和临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring. Development of Hot Melt Extruded Co-Formulated Artesunate and AmodiaquineSoluplus® Solid Dispersion System in Fixed-Dose Form: Amorphous State Characterization and Pharmacokinetic Evaluation. Metabolic Stability and Metabolite Identification of CYP450 Probe Substrates in Ferret Hepatocytes Biomimetic Nanoscale Systems for Targeted Delivery in Cancer: Current Advances and Future Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1