Ayyad Zartasht Khan, Tor Paaske Utheim, Jon Roger Eidet
{"title":"Retinal Pigment Epithelium Transplantation: Past, Present, and Future.","authors":"Ayyad Zartasht Khan, Tor Paaske Utheim, Jon Roger Eidet","doi":"10.18502/jovr.v17i4.12325","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal pigment epithelium (RPE) is a monolayer of cells situated between photoreceptors and the underlying choroid. It is essential for normal retinal function. Damaged RPE is associated with diseases such as age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. RPE cells can easily be visualized <i>in vivo</i>, sustainable <i>in vitro</i>, and differentiated from stem cells with a relatively straightforward protocol. Due to these properties and the clinical significance of this epithelium in various retinal diseases, RPE transplantation as a treatment modality has gained considerable interest in the last decade. This paper presents the main techniques for RPE transplantation and discusses recent clinically relevant publications.</p>","PeriodicalId":16586,"journal":{"name":"Journal of Ophthalmic & Vision Research","volume":"17 4","pages":"574-580"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806312/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmic & Vision Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jovr.v17i4.12325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Retinal pigment epithelium (RPE) is a monolayer of cells situated between photoreceptors and the underlying choroid. It is essential for normal retinal function. Damaged RPE is associated with diseases such as age-related macular degeneration, Stargardt's macular dystrophy, and retinitis pigmentosa. RPE cells can easily be visualized in vivo, sustainable in vitro, and differentiated from stem cells with a relatively straightforward protocol. Due to these properties and the clinical significance of this epithelium in various retinal diseases, RPE transplantation as a treatment modality has gained considerable interest in the last decade. This paper presents the main techniques for RPE transplantation and discusses recent clinically relevant publications.