Lipid composition modulates interactions of p7 viroporin during membrane insertion

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of structural biology Pub Date : 2023-09-01 DOI:10.1016/j.jsb.2023.108013
Oluwatoyin Campbell, Viviana Monje-Galvan
{"title":"Lipid composition modulates interactions of p7 viroporin during membrane insertion","authors":"Oluwatoyin Campbell,&nbsp;Viviana Monje-Galvan","doi":"10.1016/j.jsb.2023.108013","DOIUrl":null,"url":null,"abstract":"<div><p>Viral proteins interact with lipid membranes during various stages in the viral life cycle to propagate infection. p7 is an ion channel forming protein of Hepatitis C virus (HCV) that participates in viral assembly. Studies show that it has close ties to lipid metabolism in the cell and anionic phosphatidylserine (PS) lipids are suggested to be key for its permeabilizing function, but the mechanism of its interaction with the lipid environment is largely unknown. To begin unraveling the molecular processes of the protein, we evaluated the impact of lipid environment on the binding and insertion mechanism of p7 prior to channel formation and viral assembly using molecular dynamics simulations. It is seen that p7 is sensitive to its lipid environment and results in different remodeling patterns in membranes. Helix 1 (H1) is especially important for peptide insertion, with deeper entry taking place when the membrane contains phosphatidylserine (PS). Helix 2 (H2) and the adjacent loop connecting to Helix 3 (H3) prompts recruitment of phosphatidylethanolamine (PE) lipids to the protein binding site in membrane models with lower surface charge. This work provides perspectives on the interplay between protein-lipid dynamics and membrane composition, and insights on membrane reorganization in mechanisms of disease.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104784772300076X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viral proteins interact with lipid membranes during various stages in the viral life cycle to propagate infection. p7 is an ion channel forming protein of Hepatitis C virus (HCV) that participates in viral assembly. Studies show that it has close ties to lipid metabolism in the cell and anionic phosphatidylserine (PS) lipids are suggested to be key for its permeabilizing function, but the mechanism of its interaction with the lipid environment is largely unknown. To begin unraveling the molecular processes of the protein, we evaluated the impact of lipid environment on the binding and insertion mechanism of p7 prior to channel formation and viral assembly using molecular dynamics simulations. It is seen that p7 is sensitive to its lipid environment and results in different remodeling patterns in membranes. Helix 1 (H1) is especially important for peptide insertion, with deeper entry taking place when the membrane contains phosphatidylserine (PS). Helix 2 (H2) and the adjacent loop connecting to Helix 3 (H3) prompts recruitment of phosphatidylethanolamine (PE) lipids to the protein binding site in membrane models with lower surface charge. This work provides perspectives on the interplay between protein-lipid dynamics and membrane composition, and insights on membrane reorganization in mechanisms of disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质组成调节膜插入过程中p7病毒孔蛋白的相互作用
病毒蛋白在病毒生命周期的不同阶段与脂质膜相互作用,以传播感染。p7是丙型肝炎病毒(HCV)的离子通道形成蛋白,参与病毒组装。研究表明,它与细胞中的脂质代谢密切相关,阴离子磷脂酰丝氨酸(PS)脂质被认为是其透化功能的关键,但其与脂质环境相互作用的机制在很大程度上尚不清楚。为了开始揭示蛋白质的分子过程,我们使用分子动力学模拟评估了脂质环境对p7在通道形成和病毒组装之前的结合和插入机制的影响。可以看出p7对其脂质环境敏感,并导致膜中不同的重塑模式。螺旋体1(H1)对肽插入特别重要,当膜含有磷脂酰丝氨酸(PS)时,会发生更深的进入。螺旋线2(H2)和连接螺旋线3(H3)的相邻环促使磷脂酰乙醇胺(PE)脂质募集到具有较低表面电荷的膜模型中的蛋白质结合位点。这项工作为蛋白质-脂质动力学和膜组成之间的相互作用提供了视角,并对疾病机制中的膜重组提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
期刊最新文献
Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. Structural basis for the effects of Ser387 phosphorylation of MgcRacGAP on its GTPase-activating activities for CDC42 and RHOA. Computational study of the HLTF ATPase remodeling domain suggests its activity on dsDNA and implications in damage tolerance. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles Editorial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1