Modified e-Delphi Process for the Selection of Patient-Reported Outcome Measures for Children and Families With Type 1 Diabetes Using Continuous Glucose Monitors: Delphi Study.
{"title":"Modified e-Delphi Process for the Selection of Patient-Reported Outcome Measures for Children and Families With Type 1 Diabetes Using Continuous Glucose Monitors: Delphi Study.","authors":"Payal Shah, Jennifer K Raymond, Juan Espinoza","doi":"10.2196/38660","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 1 diabetes (T1D) management is complex and associated with significant psychosocial burden. Continuous glucose monitors (CGM) can improve disease management and outcomes and introduce new or exacerbate existing psychosocial concerns. Patient-reported outcome measures (PROMs) can be used to capture this information, but there is no consensus on which PROMs should be used in pediatric CGM research.</p><p><strong>Objective: </strong>Here we describe the process to (1) identify PROMs that could be used to assess the impact of CGMs on pediatric patients with T1D, (2) implement a modified electronic Delphi (e-Delphi) methodology to arrive at an expert consensus on which PROMs are most suitable for clinical and research applications, and (3) establish a periodicity table for the administration of PROMs over time in a real-world evidence study.</p><p><strong>Methods: </strong>To identify appropriate PROMs for pediatric patients and families with T1D and CGMs, we conducted an asynchronous, e-Delphi process with a multidisciplinary group of experts from around the country. We identified candidate instruments through a literature review. The 3-round e-Delphi process was conducted via a study website, email, and web-based forms. Participants provided opinions on the usefulness of instruments, age validation, feasibility, time, and frequency of administration.</p><p><strong>Results: </strong>In total, 16 experts participated in the e-Delphi process; 4 of whom consistently participated in all 3 rounds. We identified 62 candidate instruments, which were narrowed down to 12 final PROMs across 5 domains: diabetes distress and burden (n=4), autonomy (n=2), quality of life (n=1), psychosocial (n=3), and technology acceptance (n=2). A quarterly administration schedule was developed to reduce burden on participants.</p><p><strong>Conclusions: </strong>PROMs can provide critical insights into the psychosocial well-being of patients. The specific measures identified in the paper are particularly well suited for pediatric patients with T1D using CGMs. Clinical implementation could help health care providers, patients, and families to engage in more comprehensive disease management.</p>","PeriodicalId":52371,"journal":{"name":"JMIR Diabetes","volume":"7 4","pages":"e38660"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9752458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/38660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type 1 diabetes (T1D) management is complex and associated with significant psychosocial burden. Continuous glucose monitors (CGM) can improve disease management and outcomes and introduce new or exacerbate existing psychosocial concerns. Patient-reported outcome measures (PROMs) can be used to capture this information, but there is no consensus on which PROMs should be used in pediatric CGM research.
Objective: Here we describe the process to (1) identify PROMs that could be used to assess the impact of CGMs on pediatric patients with T1D, (2) implement a modified electronic Delphi (e-Delphi) methodology to arrive at an expert consensus on which PROMs are most suitable for clinical and research applications, and (3) establish a periodicity table for the administration of PROMs over time in a real-world evidence study.
Methods: To identify appropriate PROMs for pediatric patients and families with T1D and CGMs, we conducted an asynchronous, e-Delphi process with a multidisciplinary group of experts from around the country. We identified candidate instruments through a literature review. The 3-round e-Delphi process was conducted via a study website, email, and web-based forms. Participants provided opinions on the usefulness of instruments, age validation, feasibility, time, and frequency of administration.
Results: In total, 16 experts participated in the e-Delphi process; 4 of whom consistently participated in all 3 rounds. We identified 62 candidate instruments, which were narrowed down to 12 final PROMs across 5 domains: diabetes distress and burden (n=4), autonomy (n=2), quality of life (n=1), psychosocial (n=3), and technology acceptance (n=2). A quarterly administration schedule was developed to reduce burden on participants.
Conclusions: PROMs can provide critical insights into the psychosocial well-being of patients. The specific measures identified in the paper are particularly well suited for pediatric patients with T1D using CGMs. Clinical implementation could help health care providers, patients, and families to engage in more comprehensive disease management.