{"title":"Onkopipe: A Snakemake Based DNA-Sequencing Pipeline for Clinical Variant Analysis in Precision Medicine.","authors":"Jingyu Yang, Tim Beißbarth, Jürgen Dönitz","doi":"10.3233/SHTI230694","DOIUrl":null,"url":null,"abstract":"<p><p>NGS is increasingly used in precision medicine, but an automated sequencing pipeline that can detect different types of variants (single nucleotide - SNV, copy number - CNV, structural - SV) and does not rely on normal samples as germline comparison is needed. To address this, we developed Onkopipe, a Snakemake-based pipeline that integrates quality control, read alignments, BAM pre-processing, and variant calling tools to detect SNV, CNV, and SV in a unified VCF format without matched normal samples. Onkopipe is containerized and provides features such as reproducibility, parallelization, and easy customization, enabling the analysis of genomic data in precision medicine. Our validation and evaluation demonstrate high accuracy and concordance, making Onkopipe a valuable open-source resource for molecular tumor boards. Onkopipe is being shared as an open source project and is available at https://gitlab.gwdg.de/MedBioinf/mtb/onkopipe.</p>","PeriodicalId":39242,"journal":{"name":"Studies in Health Technology and Informatics","volume":"307 ","pages":"60-68"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Health Technology and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI230694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
NGS is increasingly used in precision medicine, but an automated sequencing pipeline that can detect different types of variants (single nucleotide - SNV, copy number - CNV, structural - SV) and does not rely on normal samples as germline comparison is needed. To address this, we developed Onkopipe, a Snakemake-based pipeline that integrates quality control, read alignments, BAM pre-processing, and variant calling tools to detect SNV, CNV, and SV in a unified VCF format without matched normal samples. Onkopipe is containerized and provides features such as reproducibility, parallelization, and easy customization, enabling the analysis of genomic data in precision medicine. Our validation and evaluation demonstrate high accuracy and concordance, making Onkopipe a valuable open-source resource for molecular tumor boards. Onkopipe is being shared as an open source project and is available at https://gitlab.gwdg.de/MedBioinf/mtb/onkopipe.
期刊介绍:
This book series was started in 1990 to promote research conducted under the auspices of the EC programmes’ Advanced Informatics in Medicine (AIM) and Biomedical and Health Research (BHR) bioengineering branch. A driving aspect of international health informatics is that telecommunication technology, rehabilitative technology, intelligent home technology and many other components are moving together and form one integrated world of information and communication media.