{"title":"Targeting KNDy neurons to control GnRH pulses","authors":"Stephanie Constantin","doi":"10.1016/j.coph.2022.102316","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Gonadotropin-releasing hormone (GnRH) is the final output of the central nervous system<span> that drives fertility. A characteristic of GnRH secretion is its pulsatility, which is driven by a pulse generator. Each GnRH pulse triggers a luteinizing hormone (LH) pulse. However, the puzzle has been to reconcile the synchronicity of GnRH neurons with the scattered hypothalamic distribution of their cell bodies. A leap toward understanding GnRH pulses was the discovery of </span></span>kisspeptin<span> neurons near the distal processes of GnRH neurons, which secrete kisspeptins, potent excitatory neuropeptides<span> on GnRH neurons, and equipped with dual, but opposite, self-modulatory neuropeptides, neurokinin B and </span></span></span>dynorphin. Over the last decade, this cell-to-cell communication has been dissected in animal models. Today the 50-year quest for the basic mechanism of GnRH pulse generation may be over, but questions about its physiological tuning remain. Here is an overview of recent basic research that frames translational research.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1471489222001436","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Gonadotropin-releasing hormone (GnRH) is the final output of the central nervous system that drives fertility. A characteristic of GnRH secretion is its pulsatility, which is driven by a pulse generator. Each GnRH pulse triggers a luteinizing hormone (LH) pulse. However, the puzzle has been to reconcile the synchronicity of GnRH neurons with the scattered hypothalamic distribution of their cell bodies. A leap toward understanding GnRH pulses was the discovery of kisspeptin neurons near the distal processes of GnRH neurons, which secrete kisspeptins, potent excitatory neuropeptides on GnRH neurons, and equipped with dual, but opposite, self-modulatory neuropeptides, neurokinin B and dynorphin. Over the last decade, this cell-to-cell communication has been dissected in animal models. Today the 50-year quest for the basic mechanism of GnRH pulse generation may be over, but questions about its physiological tuning remain. Here is an overview of recent basic research that frames translational research.
期刊介绍:
Current Opinion in Pharmacology (COPHAR) publishes authoritative, comprehensive, and systematic reviews. COPHAR helps specialists keep up to date with a clear and readable synthesis on current advances in pharmacology and drug discovery. Expert authors annotate the most interesting papers from the expanding volume of information published today, saving valuable time and giving the reader insight on areas of importance.