Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5.

Sean Teebagy, Lauren Colwell, Emma Wood, Antonio Yaghy, Misha Faustina
{"title":"Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5.","authors":"Sean Teebagy,&nbsp;Lauren Colwell,&nbsp;Emma Wood,&nbsp;Antonio Yaghy,&nbsp;Misha Faustina","doi":"10.1055/s-0043-1774399","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b>  This study aims to evaluate the performance of ChatGPT-4, an advanced artificial intelligence (AI) language model, on the Ophthalmology Knowledge Assessment Program (OKAP) examination compared to its predecessor, ChatGPT-3.5. <b>Methods:</b>  Both models were tested on 180 OKAP practice questions covering various ophthalmology subject categories. <b>Results:</b>  ChatGPT-4 significantly outperformed ChatGPT-3.5 (81% vs. 57%; <i>p</i> <0.001), indicating improvements in medical knowledge assessment. <b>Discussion:</b>  The superior performance of ChatGPT-4 suggests potential applicability in ophthalmologic education and clinical decision support systems. Future research should focus on refining AI models, ensuring a balanced representation of fundamental and specialized knowledge, and determining the optimal method of integrating AI into medical education and practice.</p>","PeriodicalId":73579,"journal":{"name":"Journal of academic ophthalmology (2017)","volume":"15 2","pages":"e184-e187"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e6/e4/10-1055-s-0043-1774399.PMC10495224.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of academic ophthalmology (2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0043-1774399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction:  This study aims to evaluate the performance of ChatGPT-4, an advanced artificial intelligence (AI) language model, on the Ophthalmology Knowledge Assessment Program (OKAP) examination compared to its predecessor, ChatGPT-3.5. Methods:  Both models were tested on 180 OKAP practice questions covering various ophthalmology subject categories. Results:  ChatGPT-4 significantly outperformed ChatGPT-3.5 (81% vs. 57%; p <0.001), indicating improvements in medical knowledge assessment. Discussion:  The superior performance of ChatGPT-4 suggests potential applicability in ophthalmologic education and clinical decision support systems. Future research should focus on refining AI models, ensuring a balanced representation of fundamental and specialized knowledge, and determining the optimal method of integrating AI into medical education and practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高ChatGPT-4在OKAP考试中的表现:与ChatGPT-3.5的比较研究。
本研究旨在评估先进的人工智能(AI)语言模型ChatGPT-4在眼科知识评估计划(OKAP)考试中的表现,并与其前身ChatGPT-3.5进行比较。方法:采用180道OKAP实践题对两种模型进行检验。结果:ChatGPT-4显著优于ChatGPT-3.5 (81% vs. 57%;p讨论:ChatGPT-4的优越性能表明其在眼科教育和临床决策支持系统中的潜在适用性。未来的研究应侧重于完善人工智能模型,确保基础知识和专业知识的平衡代表,并确定将人工智能融入医学教育和实践的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Erratum: The Big Data Gap: Asymmetric Information in the Ophthalmology Residency Match Process and the Argument for Transparent Residency Data. Self-Reported Perceptions of Preparedness among Incoming Ophthalmology Residents. The Matthew Effect: Prevalence of Doctor and Physician Parents among Ophthalmology Applicants. Gender Representation on North American Ophthalmology Societies' Governance Boards. The Big Data Gap: Asymmetric Information in the Ophthalmology Residency Match Process and the Argument for Transparent Residency Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1